傅立叶分析:傅立叶分析是将原始信号分解成不同频率的成分的正弦波,或者说是将时域信号转变为频域信号的一种数学方法。但是FFT分析有比较严重的缺陷
首先,时域信号变换为频域信号时丢失了时间信息,这样我们在观察频域图时就不能看到事件是在什么时间发生的。
另外,FFT是建立在信号的平稳假设基础上的,所以严格的说,FFT只适应于对平稳信号的分析。
其次,FFT分析其实质是一种线性变换方法,在大型旋转机械故障情况下会表现出较强的非线性,这时采用FFT分析对它们进行处理。
短时傅立叶变换:短时傅立叶变换(STFT)又称加窗傅立叶变换,它是将信号乘以一个滑动的窗函数然后对窗内信号h(t-tao)进行傅立叶变换,其定义为:
STFTf(w,tao)=f(t)h*(t-tao)e-jwtdt在正负无穷之间的积分
式中,*表示复共轭,h(t)可采用Hamming,Hanning,Gabor等窗函数,随着τ的移动,得到一组原信号的“局部”频谱,从而能够反映非平稳信号的时-频分布特征。由式中可以看出STFT具有时域局部化功能,h(t-tao)在时域中是滑动窗,在频域中相当于带通滤波器;STFT可以分析非平稳动态信号,由于其基础是傅立叶变换,所以更适合分析准平稳信号;在STFT计算中,当选定h(t),则时频分辨率保持不变;但同样可以看出,STFT缺乏细化能力,反映强烈瞬变信号的非平稳性功能不足。STFT提供了同时在时域和频域内观察信号的方法,然而由于滑动窗口的长度对所有频率成分是固定的,因此STFT只能保证有限的精度,它对于剧烈变化的瞬变信号分析仍存在较大误差。
白噪声的概念:白噪声,指功率谱密度函数为常数的噪声,或者说功率在频域内均匀分布,“白”是借用光谱学的概念,因为白光是复合光,包括一切波长的光。 白噪声是仅是一个理想化的概念,如果噪声的功率谱密度函数仅在一定频率范围内为常数,而所要考虑的系统带宽在这个频率范围内、又远小于这个频率范围,此时的噪声就可以作为白噪声处理。 提到“高斯噪声”,它经常和“白噪声”用在一起。然而它们是两个不同的概念。“高斯噪声”指电压或电流的幅度的概率密度符合高斯分布(即正态分布)的噪声。 高斯噪声和白噪声,是从不同的角度来界定噪声的,二者没有必然的联系,高斯噪声不一定是白噪声,反之亦然。如果既是高斯噪声又是白噪声那么就叫做“高斯白噪声”。 高斯白噪声是一类典型的噪声,在信号或系统的噪声分析及噪声中信号的检测中,经常作为理想的噪声模型。
分析频率/采样点数/谱线数的设置要点