In a 2 dimensional array grid, each value grid[i][j] represents the height of a building located there. We are allowed to increase the height of any number of buildings, by any amount (the amounts can be different for different buildings). Height 0 is considered to be a building as well.
At the end, the “skyline” when viewed from all four directions of the grid, i.e. top, bottom, left, and right, must be the same as the skyline of the original grid. A city’s skyline is the outer contour of the rectangles formed by all the buildings when viewed from a distance. See the following example.
What is the maximum total sum that the height of the buildings can be increased?
Example:
Input: grid = [[3,0,8,4],[2,4,5,7],[9,2,6,3],[0,3,1,0]]
Output: 35
Explanation:
The grid is:
[ [3, 0, 8, 4],
[2, 4, 5, 7],
[9, 2, 6, 3],
[0, 3, 1, 0] ]
The skyline viewed from top or bottom is: [9, 4, 8, 7]
The skyline viewed from left or right is: [8, 7, 9, 3]
The grid after increasing the height of buildings without affecting skylines is:
gridNew = [ [8, 4, 8, 7],
[7, 4, 7, 7],
[9, 4, 8, 7],
[3, 3, 3, 3] ]
Notes:
1 < grid.length = grid[0].length <= 50.
All heights grid[i][j] are in the range [0, 100].
All buildings in grid[i][j] occupy the entire grid cell: that is, they are a 1 x 1 x grid[i][j] rectangular prism.
这个矩形里横向、纵向分别找到最大的。然后每一个元素所在点取横向、纵向两个最大值中的最小值。最终结果取每一个点增长的量的和。
answer one
Idea:
For grid[i][j], it can’t be higher than the maximun of its row nor the maximum of its col.
So the maximum increasing height for a building at (i, j) is min(row[i], col[j]) - grid[i][j]
Codes:
row: maximum for every row
col: maximum for every col
The fisrt loop of grid calcule maximum for every row and every col.
The second loop calculate the maximum increasing height for every building.
Complexity
O(N^2)
public int maxIncreaseKeepingSkyline(int[][] grid) {
int n = grid.length;
int[] col = new int[n], row = new int[n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
row[i] = Math.max(row[i], grid[i][j]);
col[j] = Math.max(col[j], grid[i][j]);
}
}
int res = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res += Math.min(row[i], col[j]) - grid[i][j];
return res;
}