Anchor Free 的孪生目标跟踪

Anchor-free + 孪生网络做跟踪在 2020 年非常火爆,相关笔记在 b 站记录。本文主要对其整合进行简单归纳。

[Note3] Anchor Free 的目标跟踪 - 哔哩哔哩专栏 (bilibili.com)

[Note17] Anchor-free 的目标跟踪 (下) - 哔哩哔哩专栏 (bilibili.com)

跟踪任务可以看成是分类任务与状态估计任务的结合分类任务的目的是精确定位目标的位置,而状态估计获得目标的姿态(即目标框)。SiamFC++ 一文将当前的跟踪器按照不同状态估计的方法分为三类:

  1. 以 DCF 和 SiamFC 为主的跟踪器,构建多尺度金字塔,将搜索区域缩放到多个比例,选择最高得分对应的尺度,这种方式是最不精确的同时先验的固定长宽比不适合现实任务
  2. 以 ATOM 为主的跟踪器,借鉴 IOUNet,通过 IOU 的梯度迭代来细化 box,提升精度的同时带来了较多的超参数以及时间上的消耗
  3. 以 SiamRPN 为主的追踪器,通过 RPN 预设 anchor 来回归框,这类方法虽然很高效,但是 anchor 的设定不但会引入模糊的相似性得分,而且 anchor 的设置需要有大量的数据分布先验信息,与通用跟踪的目的不符合

本文主要记录用 Anchor Free 的思想来解决上述目标跟踪状态估计中存在的问题。目前比较主流的都是基于 FCOS 和 CenterNet 两种无锚框方式展开的。

FCOS 类

SiamFC++: Towards Robust and Accurate Visual Tracking with Target Estimation Guidelines

论文 代码

针对 siam 网络分析了之前的工作不合理的地方,提出了 4 条 guidelines:

G1:decomposition of classification and state estimation:跟踪任务可以分解为分类与状态估计。分类影响鲁棒性,状态估计影响精确性。多尺度金字塔的方式忽略了状态估计所以精确性很低

G2:non-ambiguous scoring:分类得分应该直接表示为目标在视野中存在的置信度分数,而不是像预定义的 anchor 那样匹配 anchor 和目标,这样容易产 False positive;

G3:prior knowledge-free:跟踪器不应该依赖过多的先验知识(如尺度 / 长宽比)。现有的方法普遍存在对数据分布先验知识的依赖,阻碍了其泛化能力

G4:estimation quality assessment:不能直接使用分类置信度来评价状态估计,需要使用独立于分类的质量评估方式。(如 RPN 系列直接就是选择分类置信度最高的位置进行边框预测,而 ATOM,DIMP 则另外加入了 IOU 信息来指导边框调整

作者依据这 4 条 guidelines 设计了 SiamFC++,将目标检测中的 Anchor Free 的 FCOS 应用到 Siamese 框架中,整体结构如下,细节部分可以去开头我在 b 站的专栏。

 

SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking

论文 代码

 

这一篇和 SiamFC++ 很类似,这里仅标注一些实践细节的差异。

  • backbone 采用了改造的 resnet50;
  • multi-stage 融合对相关结果拼接用 1*1 卷积降维 / 融合,而不是像 siamrpn++ 那样对相关后的分类预测响应图加权相加;
  • 分类和回归均由一个相关引出,而不是每个分支对应一个相关。这样计算量更小效率更高,而性能差不多;
  • inference 阶段为了避免抖动取了中心点周围 top-k 的均值作为最终结果。

细节同样参照开头 b 站专栏。


Siamese Box Adaptive Network for Visual Tracking

论文 代码 解读icon-default.png?t=N6B9https://www.bilibili.com/read/cv5400217

 

同样是 FCOS 的应用,比较 insight 的地方是打标签的时候使用椭圆标签,两个椭圆,小椭圆 E2 内的点是 positive,大椭圆 E1 外的点是 negative,两个椭圆中间的部分为 ignore。椭圆标签能够更紧凑地标注正负样本,并且设置了缓冲 (ignore) 以忽略模棱两可的样本。


Fully Conventional Anchor-Free Siamese Networks for Object Tracking

论文

将 FCOS 与级联结构结合,另一个就是分配 GT 到 AFPN 层时采用了 FCOS 一样的思路(划分 [0,64], [64,128], [128,∞])

 

 

Ocean: Object-aware Anchor-free Tracking

论文 代码 解读

 

 

  • anchor-base 方法对于弱预测的修正能力较差,因为训练时只考虑了 IOU 大于阈值的 anchor 的回归,对于跟踪过程中如果出现 overlap 很小的 anchor 很难去 refine。而 anchor-free 可以针对每个点进行预测;
  • 作者设计了一个 feature alignment module 来从预测框中学习 object-aware feature(图 2c),从而对物体尺度敏感;
  • 特征融合上采用 xy 轴膨胀系数不同的膨胀卷积进行融合,不同膨胀的卷积可以捕获不同尺度的特征,提高最终融合特征的尺度不变性。

 

CenterNet 类

Siamese Attentional Keypoint Network for High Performance Visual Tracking

论文

这篇将 CenterNet 和 CornerNet 结合到跟踪中,分别预测中心点和两个角点,以及运用了 CBAM 注意力机制强化上下文信息,应该是第一个将 CenterNet/CornerNet 用进来的,遗憾的是性能没有刷的很高。细节同样参照开头 b 站专栏。

 

Accurate Anchor Free Tracking

论文

这篇就是比较典型的 CenterNet 模式了,预测中心点,中心偏移以及宽高。

作者另外设计了 backbone,最后在 VOT2018 性能虽然比 siamrpn++ 略低但是速度是它的 3.9 倍(136FPS v.s. 35FPS)。


Siamese Keypoint Prediction Network for Visual Object Tracking

论文 代码

这一篇将 casscade 的思想结合在 centernet 类的 siamese 跟踪器中,看上面图 2 结构已经很清晰了,KPN 结构如下:

 

还有一个需要关注的就是每个 stage 训练的时候分类标签的高斯方差不一样,遵循的原则就是越高的 stage 峰值越收束。目的即随着级联的进行,监管信号越来越严格。

其他

Correlation-Guided Attention for Corner Detection Based Visual Tracking

论文 解读

作者为了解决跟踪中回归框估计不准确的问题,引入角点检测来得到更紧致的回归框。分析了之前一些角点检测方法在目标跟踪中无法取得好性能的原因,并提出了两阶段的 correlation-guided attentional corner detection (CGACD) 方法。第一阶段使用 siamese 网络得到目标区域的粗略 ROI,第二阶段通过空间和通道两个 correlation-guided attention 来探索模板和 ROI 之间的关系,突出角点区域进行检测。速度可以达到 70FPS。

RPT: Learning Point Set Representation for Siamese Visual Tracking

论文 代码 原作者解读

现有的跟踪方法往往采用矩形框或四边形来表示目标的状态(位置和大小),这种方式忽略了目标自身会变化的特点(形变、姿态变化),因此作者受启发自 Reppoints 检测方法,采用表示点(Representative Points)方法来描述目标的外观特征,学习表示点的特征,根据表示点的分布确定目标的状态,实现更精确的目标状态估计。

 具体可以参考原作者在知乎的解读,该方法取得了 VOT2020-ST 的冠军。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值