题目
存在一个 无向图 ,图中有 n
个节点。其中每个节点都有一个介于 0
到 n - 1
之间的唯一编号。给你一个二维数组 graph
,其中 graph[u]
是一个节点数组,由节点 u
的邻接节点组成。形式上,对于 graph[u]
中的每个 v
,都存在一条位于节点 u
和节点 v
之间的无向边。该无向图同时具有以下属性:
-
不存在自环(
graph[u]
不包含u
)。 -
不存在平行边(
graph[u]
不包含重复值)。 -
如果
v
在graph[u]
内,那么u
也应该在graph[v]
内(该图是无向图) -
这个图可能不是连通图,也就是说两个节点
u
和v
之间可能不存在一条连通彼此的路径。
二分图 定义:如果能将一个图的节点集合分割成两个独立的子集 A
和 B
,并使图中的每一条边的两个节点一个来自 A
集合,一个来自 B
集合,就将这个图称为 二分图 。
如果图是二分图,返回 true
;否则,返回 false
。
示例 1:
输入:graph = [[1,2,3],[0,2],[0,1,3],[0,2]] 输出:false 解释:不能将节点分割成两个独立的子集,以使每条边都连通一个子集中的一个节点与另一个子集中的一个节点。
示例 2:
输入:graph = [[1,3],[0,2],[1,3],[0,2]] 输出:true 解释:可以将节点分成两组: {0, 2} 和 {1, 3} 。
思路
-
二分图定义:图中顶点由两个集合组成,且所有边的两个顶点正好在两个集合里,更形象的表述就是两个集合各自为一类标记,相邻的边的标记不能一样。
-
那么一开始先考察一个点,给它打上标记,然后找它响铃的顶点,打上不同的标记,BFS下去,所有顶点如果完全没有发生冲突,就说明二分图
-
需要注意的是,从一个顶点BFS不一定能遍历所有的点,(我一开始做这题就犯了这个错误),题目没有说是连通的
-
所以必须得所有点都遍历一遍,再对每个点进行BFS,才能不漏情况
python代码:
class Solution(object):
def isBipartite(self, graph):
n = len(graph)
half = [0 for _ in range(n)] #1标记1类,-1标记另一类,0为还没标记
que = deque()
for i in range(n):#每个顶点都遍历,因为不一定全部点连通
if half[i] != 0: #已经标记过就直接跳过
continue
que.append(i)
half[i] = 1
while que:
cur = que.popleft()
mark = -half[cur] #此时应该给与cur相邻的节点所作的标记
for j in graph[cur]:
if half[j] == 0:
half[j] = mark
que.append(j) #BFS入队进行检验
elif half[j] != mark: #与之前标记发生冲突,直接退出
return False
return True
复杂度
时间:O(n+m),每个顶点和每条边都只遍历一遍,n为点数,m为边数
空间:O(n)