排序算法总结

本文详细介绍了六种常见的排序算法:冒泡排序、选择排序、插入排序、快速排序、堆排序和归并排序,包括它们的时间复杂度和稳定性特点。此外,还特别讨论了归并排序在解决小和与逆序对问题上的应用。
摘要由CSDN通过智能技术生成

3. 排序算法

总结:

  • 稳定性:值相同的数,排完序后数字的相对位置不变。
    • 基础类型没用,一些实际中的非基础类型,对稳定性有要求

img

img

六种常用的排序

冒泡排序(Bubble Sort)

img

  • 时间O(n^2),空间O(1)
  • 满足条件,交换相邻的两个数,每次循环就可以把当下序列最大的移到右边
  • n个数,循环n-1趟,每趟,还剩(n-i)个数,所以需要(n-1-i)次比较
public void BubbleSort(int[] arr){
        int n = arr.length;
        for(int i = 1 ; i < n ; i--){
            //一共要循环arr.length次
            for(int j = 0 ; j < n-1-i ; j++){
                //每次作n-1-i次交换判断
                if (arr[j] > arr[j+1])
                    swap(arr,j,j+1);
            }
        }
    }

选择排序(Selection Sort)

img

  • 无论什么数据进去都是O(n^2)的时间复杂度

  • 下标(i–>>n)中找到最小的min,和下标i交换

  • 总共(n-1)趟,每趟还剩(n-i)个数,所以需要(n-1-i)次比较

  • (每次先令下标i为当前轮的min)

public static void BubbleSort(int[] arr){
        int n = arr.length;
        for(int i = 0 ; i < n-1 ; i++){
            //一共要循环arr.length-1次
            for(int j = 0 ; j < n-1-i ; j++){
                //每次作n-1-i次交换判断
                if (arr[j] > arr[j + 1])
                    swap(arr,j,j+1);
            }
        }
    }

插入排序(Insertion Sort)

img

  • 时间:O(n^2),空间:只需用到O(1)的额外空间
  • 从第二个元素开始,共(n-1)趟
  • 每趟i元素逐个向前比较,直到遇到更小的停止
  • 用临时变量tem保存arr[i]
public static void InsertionSort(int[] arr){
        if(arr == null || arr.length < 2)
            return;
        int temp;//暂时保存arr[i]的值
        int n = arr.length;
        int i = 0;
        int j = 0;
        for(i = 1 ; i < n ; i++){
            temp = arr[i];
            for(j = i-1 ; j >= 0; j--){
                if(arr[j] <= temp)
                    break;
                arr[j+1]=arr[j];
                //直接赋值,因为此时arr[i]已经被保存在temp里面了,免去了swap的繁琐。
            }
            arr[j+1] = temp;
        }
    }

快速排序(Quick Sort)

img

  • 从数列中随机挑一个数作为基准,把他和最右侧数字进行交换

  • 进入partition,

    两个指针less,more

    • less是小于区的边界所以,初始值为L-1
    • more是大于区的边界,但此时基准值已经在最右侧大于区了,初始值为R

    分三个区,三种情况

    • 小于区,如果数字小于基准值,则和小于区外第一个数字做交换,扩充小于区
    • 等于区,如果数字等于基准值,不动单纯L++(之后会被小于区的扩张自动推到中间)
    • 大于区, 如果数字大于基准值,和大于区左侧的第一个数做交换,扩充大于区
  • 最后交换more指针和R,(即把基准值放在大于区边缘)

public static void QuickSort(int[] arr){
        if(arr.length<2)return;
        Sort(arr,0,arr.length-1);
    }

    public static void Sort(int[] arr, int L, int R){
        if(L<R){
            swap(arr,L+(int) (Math.random()*(R-L+1)),R);
            int[] range = Partition(arr,L,R);
            Sort(arr,L,range[0]-1);
            Sort(arr,range[1]+1,R);
        }
    }

    public static int[] Partition(int[] arr,int L,int R){
        int less = L-1;
        int more = R;
        while(L < more){
            if(arr[L]<arr[R]) swap(arr,++less,L++);
            else if(arr[L]>arr[R]) swap(arr,--more,L);
            else L++;
        }
        swap(arr,R,more);
        return new int[] {less+1,more};
    }

堆排序(Heap Sort)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A0CW3WVE-1689069745089)(https://gitee.com/RainySigh/images/raw/yujie/20230711162800-31.gif)]

数据结构
  • 父—i(i为下标元素)
    • 左孩子:2i+1
    • 右孩子:2*i+2;
  • 子—i(i为下标元素)
    • 父:(i-1)/2;
概念解析
  • 每个结点的值都大于等于其左右孩子结点的值,称为大顶堆
  • 每个结点的值都小于等于其左右孩子结点的值,称为小顶堆
原理步骤
  • 将初始的数组可以看成一个完全二叉树

  • 则第一步,将初始序列构建成大顶堆(结束时可得最大值必定在二叉树顶)

  • 将栈顶元素R[1] 和最后一个元素交换,得到新序列

  • 重新将新序列恢复成大顶堆

  • 重复上述操作,直到有序区元素个数为n-1,排序过程完成

代码
  • 堆排序
public static void heapSort(int[] arr){
    if(arr==null || arr.length < 2){
        return;
    }
    //将其调整为大顶堆
    for(int i = 0; i < arr.length; i++){
        heapInsert(arr,i);  //O(logN)
    }
    //交换堆顶数字(最大值),和末尾元素
    //则此时最大值,已经被放到了数字末尾
    int heapSize = arr.length;
    swap(arr, 0, --heapSize);
    //重复上述过程,继续对余下的数字进行排序
    while(heapSize>0){
        heapify(arr, 0, heapSize);
        swap(arr, 0, --heapSize);
    }
}
  • 从后往前构造堆
  1. 从最后一棵子树开始,从后往前调整

  2. 调整为大顶堆

    //某个数处在index位置,继续往上移动
    public static void heapInsert(int[] arr, int index){
        while (arr[index] > arr[(index-1)/2]){
            swap(arr, index, (index - 1)/2);
            index = (index - 1)/2}
    }
    
  • 从前往后构造堆
public static void heapify(int[] arr, int index, int heapSize){
    int left = index * 2 + 1;
    
    //如果下方还有孩子
    while(left < heapSize){
        //两个孩子中,谁的值大,谁把下标给largest
        //只有右孩子在范围内,且比左值大的时候,才赋给largest
        int largest = left + 1 < heapSize 
            && arr[left + 1] > arr[left]
            ? left + 1 :left;
       
        //父和孩子之间,谁的值大,就把下标给largest
        largest = arr[largest] > arr[index] ? largest : index;
        if(largest == index)break;
        swap(arr,largest,index);
        index = largest;
        left = index * 2 + 1;
    }
}

归并排序(Merge Sort)

img

  • 采用分治法(Divide and Conquer)

  • MergeSort规则:

    • 把长度为n的输入序列分成两个长度为n/2的子序列;
    • 对这两个子序列分别采用归并排序;
    • 将两个排序好的子序列合并成一个最终的排序序列。
  • merge规则:

    • 两段数组,两个指针,一个help数组临时存储
    • 前后两个数组指针指向的数字,谁小谁放入help,指针后移
    • 直到某一段数组的指针溢出,就把另一个全部存进help
public static void MergeSort(int[] arr){
	int n = arr.length;
	if(n < 2) return arr;
	int L = 0;
	int R = n-1;
	Service(arr,L,R);
}
public void Sevice(int[] arr,int L,int R){
	if(L==R) return;
	int M = L+((R-L)>>1)
	Service(arr,L,M);
	Service(arr,M+1,R);
	merge(arr,L,R);
}
public void merge(int[] arr,int L,int R){
	int[] help = new int[R-L+1];
	int M = (R+L)>>1;
	int pl = L;
	int pr = M+1;
	int i = 0;
	while(pl<=M && pr<=R) help[i++] = (arr[pl]>arr[pr]) ? arr[pr] : arr[pl];
	while(pl<=M) help[i++]=arr[pl++];
	while(pr<=R) help[i++]=arr[pr++];
	int j = L;
	for(int n : help)
	arr[j++] = n;
}

小和,逆序对问题----归并排序的变种:

力扣同类型题链接

327. 区间和的个数

剑指 Offer 51. 数组中的逆序对

例题-小和问题

题目描述

在一个数组中,每一个数左边比当前数小的数累加起来,叫做这个数组的小和。求一个给定数组的小和。

例子

数组为:[1,3,4,2,5]

1左边比1小的数:没有

3左边比3小的数:1

4左边比4小的数:1,3

2左边比2小的数:1

5左边比5小的数:1,3,4,2

所以小和为1+(1+3)+1+(1+3+4+2)=16

解析

小和中,

1出现了四次,因为1右侧有四个比一大的数

3出现了两次,因为三右侧有两个比三大的数字

以此类推,可得

小和就是每个数字*其右侧比自身大的数字个数

为什么使用归并排序
  • 在左组和右组merge的时候,会比较数的大小,
  • 这时就可以在右组找到比左组当前数大的个数。
和经典的归并排序的区别

左右组相等的时候,要先拷贝右组的数字,且不产生小和

右组大于左组的时候,直接让小和加上左数*右组还剩下的个数(此时各组内都已经排好序了);

具体代码
public static int SmallSum(int[] arr){
        int L = 0;
        int R = arr.length-1;
        return Process(arr,L,R);
    }

    public static int Process(int[] arr, int L, int R){
        if(R==L)return 0;
        int M = L + ((R-L)>>1);
        return
                Process(arr,L,M)+Process(arr,M+1,R)+Merge(arr,L,M,R);
    }

    public static int Merge(int[] arr, int L, int M, int R){
        int p1 = L;
        int p2 = M+1;
        int LittleSum = 0;
        int[] help = new int[R-L+1];
        int i = 0;
        while(p1<=M&&p2<=R){
            if(arr[p1]>=arr[p2])
                help[i++] = arr[p2++];
            else if(arr[p1]<arr[p2]){
                LittleSum+=(arr[p1]*(R-p2+1));
                help[i++] = arr[p1++];
            }
        }
        while(p1<=M)
            help[i++] = arr[p1++];
        while(p2<=R)
            help[i++] = arr[p2++];

        i = 0;
        for (int j = L; j <= R; j++) {
            arr[j] = help[i++];
        }
        return LittleSum;
    }

例题–逆序对问题

设有一个数组 [a1, a2, a3,… an],对于数组中任意两个元素ai,aj,若i<j,ai>aj,则说明ai和aj是一对逆序对。求一个给定数组的逆序对个数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值