3. 排序算法
总结:
- 稳定性:值相同的数,排完序后数字的相对位置不变。
- 基础类型没用,一些实际中的非基础类型,对稳定性有要求
六种常用的排序
冒泡排序(Bubble Sort)
- 时间O(n^2),空间O(1)
- 满足条件,交换相邻的两个数,每次循环就可以把当下序列最大的移到右边
- n个数,循环n-1趟,每趟,还剩(n-i)个数,所以需要(n-1-i)次比较
public void BubbleSort(int[] arr){
int n = arr.length;
for(int i = 1 ; i < n ; i--){
//一共要循环arr.length次
for(int j = 0 ; j < n-1-i ; j++){
//每次作n-1-i次交换判断
if (arr[j] > arr[j+1])
swap(arr,j,j+1);
}
}
}
选择排序(Selection Sort)
-
无论什么数据进去都是O(n^2)的时间复杂度
-
下标(i–>>n)中找到最小的min,和下标i交换
-
总共(n-1)趟,每趟还剩(n-i)个数,所以需要(n-1-i)次比较
-
(每次先令下标i为当前轮的min)
public static void BubbleSort(int[] arr){
int n = arr.length;
for(int i = 0 ; i < n-1 ; i++){
//一共要循环arr.length-1次
for(int j = 0 ; j < n-1-i ; j++){
//每次作n-1-i次交换判断
if (arr[j] > arr[j + 1])
swap(arr,j,j+1);
}
}
}
插入排序(Insertion Sort)
- 时间:O(n^2),空间:只需用到O(1)的额外空间
- 从第二个元素开始,共(n-1)趟
- 每趟i元素逐个向前比较,直到遇到更小的停止
- 用临时变量tem保存arr[i]
public static void InsertionSort(int[] arr){
if(arr == null || arr.length < 2)
return;
int temp;//暂时保存arr[i]的值
int n = arr.length;
int i = 0;
int j = 0;
for(i = 1 ; i < n ; i++){
temp = arr[i];
for(j = i-1 ; j >= 0; j--){
if(arr[j] <= temp)
break;
arr[j+1]=arr[j];
//直接赋值,因为此时arr[i]已经被保存在temp里面了,免去了swap的繁琐。
}
arr[j+1] = temp;
}
}
快速排序(Quick Sort)
-
从数列中随机挑一个数作为基准,把他和最右侧数字进行交换
-
进入partition,
两个指针less,more
- less是小于区的边界所以,初始值为L-1
- more是大于区的边界,但此时基准值已经在最右侧大于区了,初始值为R
分三个区,三种情况
- 小于区,如果数字小于基准值,则和小于区外第一个数字做交换,扩充小于区
- 等于区,如果数字等于基准值,不动单纯L++(之后会被小于区的扩张自动推到中间)
- 大于区, 如果数字大于基准值,和大于区左侧的第一个数做交换,扩充大于区
-
最后交换more指针和R,(即把基准值放在大于区边缘)
public static void QuickSort(int[] arr){
if(arr.length<2)return;
Sort(arr,0,arr.length-1);
}
public static void Sort(int[] arr, int L, int R){
if(L<R){
swap(arr,L+(int) (Math.random()*(R-L+1)),R);
int[] range = Partition(arr,L,R);
Sort(arr,L,range[0]-1);
Sort(arr,range[1]+1,R);
}
}
public static int[] Partition(int[] arr,int L,int R){
int less = L-1;
int more = R;
while(L < more){
if(arr[L]<arr[R]) swap(arr,++less,L++);
else if(arr[L]>arr[R]) swap(arr,--more,L);
else L++;
}
swap(arr,R,more);
return new int[] {less+1,more};
}
堆排序(Heap Sort)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A0CW3WVE-1689069745089)(https://gitee.com/RainySigh/images/raw/yujie/20230711162800-31.gif)]
数据结构
- 父—i(i为下标元素)
- 左孩子:2i+1
- 右孩子:2*i+2;
- 子—i(i为下标元素)
- 父:(i-1)/2;
概念解析
- 每个结点的值都大于等于其左右孩子结点的值,称为大顶堆
- 每个结点的值都小于等于其左右孩子结点的值,称为小顶堆
原理步骤
-
将初始的数组可以看成一个完全二叉树
-
则第一步,将初始序列构建成大顶堆(结束时可得最大值必定在二叉树顶)
-
将栈顶元素R[1] 和最后一个元素交换,得到新序列
-
重新将新序列恢复成大顶堆
-
重复上述操作,直到有序区元素个数为n-1,排序过程完成
代码
- 堆排序
public static void heapSort(int[] arr){
if(arr==null || arr.length < 2){
return;
}
//将其调整为大顶堆
for(int i = 0; i < arr.length; i++){
heapInsert(arr,i); //O(logN)
}
//交换堆顶数字(最大值),和末尾元素
//则此时最大值,已经被放到了数字末尾
int heapSize = arr.length;
swap(arr, 0, --heapSize);
//重复上述过程,继续对余下的数字进行排序
while(heapSize>0){
heapify(arr, 0, heapSize);
swap(arr, 0, --heapSize);
}
}
- 从后往前构造堆
-
从最后一棵子树开始,从后往前调整
-
调整为大顶堆
//某个数处在index位置,继续往上移动 public static void heapInsert(int[] arr, int index){ while (arr[index] > arr[(index-1)/2]){ swap(arr, index, (index - 1)/2); index = (index - 1)/2; } }
- 从前往后构造堆
public static void heapify(int[] arr, int index, int heapSize){
int left = index * 2 + 1;
//如果下方还有孩子
while(left < heapSize){
//两个孩子中,谁的值大,谁把下标给largest
//只有右孩子在范围内,且比左值大的时候,才赋给largest
int largest = left + 1 < heapSize
&& arr[left + 1] > arr[left]
? left + 1 :left;
//父和孩子之间,谁的值大,就把下标给largest
largest = arr[largest] > arr[index] ? largest : index;
if(largest == index)break;
swap(arr,largest,index);
index = largest;
left = index * 2 + 1;
}
}
归并排序(Merge Sort)
-
采用分治法(Divide and Conquer)
-
MergeSort规则:
- 把长度为n的输入序列分成两个长度为n/2的子序列;
- 对这两个子序列分别采用归并排序;
- 将两个排序好的子序列合并成一个最终的排序序列。
-
merge规则:
- 两段数组,两个指针,一个help数组临时存储
- 前后两个数组指针指向的数字,谁小谁放入help,指针后移
- 直到某一段数组的指针溢出,就把另一个全部存进help
public static void MergeSort(int[] arr){
int n = arr.length;
if(n < 2) return arr;
int L = 0;
int R = n-1;
Service(arr,L,R);
}
public void Sevice(int[] arr,int L,int R){
if(L==R) return;
int M = L+((R-L)>>1)
Service(arr,L,M);
Service(arr,M+1,R);
merge(arr,L,R);
}
public void merge(int[] arr,int L,int R){
int[] help = new int[R-L+1];
int M = (R+L)>>1;
int pl = L;
int pr = M+1;
int i = 0;
while(pl<=M && pr<=R) help[i++] = (arr[pl]>arr[pr]) ? arr[pr] : arr[pl];
while(pl<=M) help[i++]=arr[pl++];
while(pr<=R) help[i++]=arr[pr++];
int j = L;
for(int n : help)
arr[j++] = n;
}
小和,逆序对问题----归并排序的变种:
力扣同类型题链接
例题-小和问题
题目描述:
在一个数组中,每一个数左边比当前数小的数累加起来,叫做这个数组的小和。求一个给定数组的小和。
例子:
数组为:[1,3,4,2,5]
1左边比1小的数:没有
3左边比3小的数:1
4左边比4小的数:1,3
2左边比2小的数:1
5左边比5小的数:1,3,4,2
所以小和为1+(1+3)+1+(1+3+4+2)=16
解析
小和中,
1出现了四次,因为1右侧有四个比一大的数
3出现了两次,因为三右侧有两个比三大的数字
以此类推,可得
小和就是每个数字*其右侧比自身大的数字个数
为什么使用归并排序
- 在左组和右组merge的时候,会比较数的大小,
- 这时就可以在右组找到比左组当前数大的个数。
和经典的归并排序的区别
左右组相等的时候,要先拷贝右组的数字,且不产生小和
右组大于左组的时候,直接让小和加上左数*右组还剩下的个数(此时各组内都已经排好序了);
具体代码
public static int SmallSum(int[] arr){
int L = 0;
int R = arr.length-1;
return Process(arr,L,R);
}
public static int Process(int[] arr, int L, int R){
if(R==L)return 0;
int M = L + ((R-L)>>1);
return
Process(arr,L,M)+Process(arr,M+1,R)+Merge(arr,L,M,R);
}
public static int Merge(int[] arr, int L, int M, int R){
int p1 = L;
int p2 = M+1;
int LittleSum = 0;
int[] help = new int[R-L+1];
int i = 0;
while(p1<=M&&p2<=R){
if(arr[p1]>=arr[p2])
help[i++] = arr[p2++];
else if(arr[p1]<arr[p2]){
LittleSum+=(arr[p1]*(R-p2+1));
help[i++] = arr[p1++];
}
}
while(p1<=M)
help[i++] = arr[p1++];
while(p2<=R)
help[i++] = arr[p2++];
i = 0;
for (int j = L; j <= R; j++) {
arr[j] = help[i++];
}
return LittleSum;
}
例题–逆序对问题
设有一个数组 [a1, a2, a3,… an],对于数组中任意两个元素ai,aj,若i<j,ai>aj,则说明ai和aj是一对逆序对。求一个给定数组的逆序对个数。