一、情景描述
1、在微服务开发中,如: 查询用户列表 userList,需要关联查询 每个用户下面的文件信息,由于数据库层隔离,不能直接进行 left join ,则需要通过关联查询 文件服务,来获取每个用户下的文件信息,伪代码如下:
List<User> userList = userService.getList(xx);
List<UserFile> userFileList = fileService.getList(userIdList);
2、再通过 关联的id,进行匹配; 一般进行匹配的方式有2种,
同时遍历 userList 和 userFileList ,逐一匹配 ;
其中一个 userList 转换为 userListMap,然后遍历另外一个 userFileList ,再进行匹配
3、本文将模拟以上2种情况,进行测试对比匹配的效率,用于总结后续的开发中,遇到类似的情况,该如何处理的,经验总结。
二、代码实现
1、定义一个 普通的内部类,有3个属性:
static class User{
private Integer id ;
private String name ;
private Integer score ;
// ingnore getter /setter construction
}
2、初始化2个 list , 一个 1w数据,一个10w数据
List<User> list = Lists.newArrayList();
List<User> list10 = Lists.newArrayList();
@Before
public void before() throws Exception {
int n1 = 10_000;
int n2 = 1_00_000;
System.out.println("n1 ="+n1 +" ; n2="+n2);
initList(n1);
initList2(n2);
System.out.println("初始化 list 完成 , list = "+ list.size() + " list10 = "+ list10.size());
}
private void initList(int n) {
for (int i = 0; i < n; i++) {
list.add(new User(i,"小明"+i));
}
}
private void initList2(int n2) {
for (int i = 0; i < n2; i++) {
list10.add(new User(i,"小明"+i, new Random().nextInt()));
}
}
3、1w List 循环 10w List :
@Test
public void listCompare() throws Exception {
final StopWatch stopWatch = StopWatch.createStarted();
list.forEach(e->{
list10.forEach(e2->{
if(e.getId().equals(e2.getId())){
e.setScore(e2.getScore());
}
});
});
System.out.println("测试匹配情况: list, 100=" + list.get(100).getScore()
+ " ; list10 , 100="+list10.get(100).getScore());
stopWatch.stop();
System.out.println("1w List 循环 10w List,耗时:" + stopWatch.getTime()+" ms");
}
3.1、输出结果如下:
n1 =10000 ; n2=100000
初始化 list 完成 , list = 10000 list10 = 100000
测试匹配情况: list, 100=1980067001 ; list10 , 100=1980067001
1w List 循环 10w List,耗时:7370 ms
4、10w List 循环 1w List
@Test
public void list10Compare() throws Exception {
final StopWatch stopWatch = StopWatch.createStarted();
list10.forEach(e->{
list.forEach(e2->{
if(e.getId().equals(e2.getId())){
e2.setScore(e.getScore());
}
});
});
System.out.println("测试匹配情况: list, 100=" + list.get(100).getScore()
+ " ; list10 , 100="+list10.get(100).getScore());
stopWatch.stop();
System.out.println("10w List 循环 1w List,耗时:" + stopWatch.getTime()+" ms");
}
4.1、输出结果如下:
n1 =10000 ; n2=100000
初始化 list 完成 , list = 10000 list10 = 100000
测试匹配情况: list, 100=-110042713 ; list10 , 100=-110042713
10w List 循环 1w List,耗时:1489 ms
5、 1w List转Map 循环 10w List 对比:
@Test
public void listMapCompare() throws Exception {
final StopWatch stopWatch = StopWatch.createStarted();
final Map<Integer, User> map = list.stream().collect(Collectors.toMap(k -> k.getId(), v -> v));
list10.forEach(e->{
final User user = map.get(e.getId());
if(Objects.nonNull(user)){
user.setScore(e.getScore());
}
});
System.out.println("测试匹配情况: list, 100=" + list.get(100).getScore()
+ " ; list10 , 100="+list10.get(100).getScore());
stopWatch.stop();
System.out.println("1w List转Map 循环 10w List 对比,耗时:" + stopWatch.getTime()+" ms");
}
5.1、输出结果如下:
n1 =10000 ; n2=100000
初始化 list 完成 , list = 10000 list10 = 100000
测试匹配情况: list, 100=690010328 ; list10 , 100=690010328
1w List转Map 循环 10w List 对比,耗时:49 ms
6、10w List转Map 循环 1w List 对比:
@Test
public void list10MapCompare() throws Exception {
final StopWatch stopWatch = StopWatch.createStarted();
final Map<Integer, User> map = list10.stream().collect(Collectors.toMap(k -> k.getId(), v -> v));
list.forEach(e->{
final User user = map.get(e.getId());
if(Objects.nonNull(user)){
e.setScore(user.getScore());
}
});
System.out.println("测试匹配情况: list, 100=" + list.get(100).getScore()
+ " ; list10 , 100="+list10.get(100).getScore());
stopWatch.stop();
System.out.println("10w List转Map 循环 1w List 对比,耗时:" + stopWatch.getTime()+" ms");
}
6.1、输出结果如下:
n1 =10000 ; n2=100000
初始化 list 完成 , list = 10000 list10 = 100000
测试匹配情况: list, 100=-623027169 ; list10 , 100=-623027169
10w List转Map 循环 1w List 对比,耗时:56 ms
三、总结
1、2个list 循环的时候,转成一个为 map,再进行匹配,效率更高。
2、2个循环同时执行时候: 大循环 套 小循环,效率更高 。【二-3 和 二-4】的执行效率对比;比如:循环 100w次, 10000*100 比 100*10000 效率会更高。