Windows网络环境下网络规划需要掌握的计算方法(一)

  

我是荔园微风,作为一名在IT界整整25年的老兵,今天总结一下Windows网络环境下网络规划必须掌握的技能:网络规划计算。今天先来讲讲第一个知识点,就是如何知道你的网络里有多少数据在跑。

不知道大家有没有这样的感觉,看了一大堆网络的书,真的到了要动手建立Windows网络的时候,才发现不知道怎么去规划,无从下手。为什么?因为你看的都是理论书籍。

而客户担心的不是你用什么协议,也不是你采用了什么高精尖的技术,他们担心的是网络建好后,网速是不是足够快,是不是能传输文字、图片和视频,会不会有网速变慢的可能,会不会经常卡顿,会不会出现影响业务的故障。

而这些知识理论书籍是不会教你的。你不管是作为一个软件设计师,还是作为一个网络规划设计师,你必须知道有多少流量从你的网上各段跑过,只有这样,你设计的网络才会保持较好的服务性。

我今天将通过一个很经典的例子来教大家如何在规划阶段做网络规划的计算方法,这个例子是原来带我做网络项目的前辈教我的,这篇文章将使你受用一生,因为当你在做这个计算时,客户会真正感谢你,因为你是真的在为他们考虑。

模拟场景:

某大型交通集团公司建设有一个集团总部,拥有4个分公司,10000多名职工,2000名办公人员,有交通场站50个,车辆营运线路250条 ,日营运车辆5000辆。公司的网络全部使用Windows的计算机和服务器,网络覆盖总部与所有分公司,要能够对所有车辆完成实时轨迹监控和调度,同时能为交通集团内部信息系统的运行提供网络支撑环境,并能满足未来五年的发展。经实际应用需求调查,发现该集团公司的网络应用主要包括四类,我们往下看:

应用名称1:车辆监控调度

产生数据情况:所有车辆每10s发送一次车辆的位置信息,每次信息量约0.00007MByte,调度指令根据需要发送,可以忽略不计。

用户情况:高峰期除少量车辆检修外,基本上所有车辆都要纳入监控。

应用方式:监控数据从移动公司传递至公交集团。

未来:预计五年后车辆增长20%。

应用名称2:办公和集团营运业务

产生数据情况:平均每个办公人员每10min左右将完成两次办公或者业务操作,每次产生的数据量大致在0.5MByte。

用户情况:上班高峰时间,所有办公人员都处于在线状态。

应用方式:信息中心倾向于对办公和运营业务采用B/S模式,即位于本部和分公司的办公人员在线访问位于集团本部的服务器。

未来:预计五年后业务的增长量为200%。

应用名称3:场站视频监控

产生数据情况:各场站的摄像机采用D1格式实时采集视频流,平均1s产生0.2MByte的视频码流。

用户情况:每个场站的大门、调度点、停车位都设置摄像头,平均每个场站5个摄像头。

应用方式:视频流在场站本地实时调阅,部分视频上传至集团,符合80/20规则。

未来:预计五年后业务的增长量为100%。

应用名称4:互联网访问

产生数据情况:办公人员可以访问互联网络,平均每个工作人员10min内进行两次互联网操作,每次产生的数据量约为0.6MByte。

用户情况:信息中心希望对互联网访问进行限制,同时在线人数不超过200人。

应用方式:各办公人员通过集团至运营商的线路访问互联网,多为B/S类应用。

未来:预计五年后型业务增长量为300%。

好了,调查完了,那怎么计算呢,要解决客户的上述担心,我们的关键是计算出应用需要传递信息的速率,那速率的单位是什么?我想大家应该想到了,是Mbps。所以我们在算的时候,要把一定时间内从网络跑过的数据量去除以这个一定时间。公式如下,请记好:

应用总信息传输速率=

平均事务量大小×每字节位数×每个会话事务数×平均用户数/平均会话长度

但在实际工程设计中,为保证峰值情况下网络能够正常运行,可以用峰值用户数代替平均用户数进行计算。同时,在实际中,还要考虑未来几年的增长量,这时,公式可以修改为:

应用总信息传输速率=

平均事务量大小×每字节位数×每个会话事务数×峰值用户数×(1+增长量)/平均会话长度

根据调查情况,可以形成如下内容:

应用名称1:车辆监控调度

平均事务量大小(MB):0.00007

峰值用户数(个):5000

平均会话长度(秒):10

每会话事务数(个):1

增长率(%):20

应用名称2:办公和集团营运业务

平均事务量大小(MB):0.5

峰值用户数(个):2000

平均会话长度(秒):600

每会话事务数(个):2

增长率(%):200

应用名称3:场站视频监控

平均事务量大小(MB):0.2

峰值用户数(个):250

平均会话长度(秒):1

每会话事务数(个):1

增长率(%):100

应用名称4:互联网访问

平均事务量大小(MB):0.6

峰值用户数(个):200

平均会话长度(秒):600

每会话事务数(个):2

增长率(%):300

根据以上值,计算各类应用的总流量为:

应用名称1:车辆监控调度

0.00007×8×5000×(1+20%)/10=0.336Mbps

应用名称2:办公和集团营运业务

0.5×8×2×2000×(1+200%)/600=80Mbps

应用名称3:场站视频监控

0.2×8×250×(1+100%)/1=800Mbps

应用名称4:互联网访问

0.6×8×2×200×(1+300%)/600=12.8Mbps

     

       下面我们把难度再提升一级,我们再来分析整个网络的流量情况,我们通过需求分析,认为交通集团企业网络主要由三级局域网络互连而成,这三级局域网络分别为集团总部的核心局域网、分公司局域网、场站局域网。公交集团企业网络将通过路由设备连接这些局域网,以便于承载整个集团的各类应用。在需求分析阶段应用分析的基础上,设计人员获取了如下的信息:

       1.车辆监控调度应用从移动公司网络获取车辆数据流,在集团局域网存储,分发至四个分公司,再进一步分发至各场站的监控计算机,四个分公司拥有车辆的比例为1:2:1:1。


  2.办公和集团营运业务应用为B/S模式,主要由分公司、场站的办公人员发起,将形成分公司、场站之间的双向数据流,客户端至服务器占应用总流量的20%,服务器至客户端占应用总流量的80%,各分公司之间办公人员数量较为接近。


  3.场站视频监控应用主要由场站摄像机产生视频流,符合80/20规则,即80%的应用流量在本地进行实时调阅与存储,20%的流量将上传至集团局域网进行调阅和存储,四个公司之间的场站数量比例同于车辆比例。


  4.互联网访问应用主要是用于分公司、场站的办公用户访问互联网,多为B/S类型应用访问,用户至集团局域网访问互联网的上行流量为20%,下行流量为80%。


  基于以上资料,假设场站局域网的流量都将经过分公司局域网汇总,再传递至集团局域网,计算集团局域网至各分公司局域网的通信流量要求,这里要注意,通信流量要求应至少满足5年的应用需求,这是应该考虑的:

应用名称1:车辆监控调度

上行总流量(Mbps):0

下行总流量(Mbps):0.336

公司比例:1:2:1:1

应用名称2:办公和集团营运业务

上行总流量(Mbps):80×0.2=16

下行总流量(Mbps):80×0.8=64

公司比例:1:1:1:1

应用名称3:场站视频监控

上行总流量(Mbps):800×0.2=160

下行总流量(Mbps):0

公司比例:1:2:1:1

应用名称4:互联网访问

上行总流量(Mbps):12.8×0.2=2.56

下行总流量(Mbps):12.8×0.8=10.24

公司比例:1:1:1:1

再根据各分公司的流量比例,计算出集团局域网和各分公司局域网之间的流量分布 情况如下。

(1)车辆监控调度:

总部至一、三、四公司下行:0.336/5=0.0672Mbps

总部至二公司下行:0.336×2/5=0.1344Mbps

(2)办公和集团营运业务:

总部至各分公司下行:80×0.8/4=16Mbps

各分公司至总部上行:80×0.2/4=4Mbps

(3)场站视频监控:

总部至一、三、四公司上行:800×0.2/5=32Mbps

总部至二公司上行:800×0.2×2/5=64Mbps

(4)因特网访问:

总部至各分公司下行:12.8×0.8/4=2.56Mbps

各分公司至总部上行:12.8×0.2/4=0.64Mbps

(5)流量计算:

一公司上行:4+32+0.64=36.64Mbps

一公司下行:0.0672+16+2.56=18.6272Mbps

二公司上行:4+64+0.64=68.64Mbps

二公司下行:0.1344+16+2.56=18.6944Mbps

三、四公司与一公司流量相同。 

各位小伙伴,这次我们就说到这里,下次我们再深入研究windows网络,相信你一定能喜欢上windows。如果要转载我的文章请说明出处哦。

作者简介:荔园微风,1981年生,高级工程师,浙大工学硕士,软件工程项目主管,做过程序员、软件设计师、系统架构师,早期的Windows程序员,Visual Studio忠实用户,C/C++使用者,是一位在计算机界学习、拼搏、奋斗了25年的老将,经历了UNIX时代、桌面WIN32时代、Web应用时代、云计算时代、手机安卓时代、大数据时代、ICT时代、AI深度学习时代、智能机器时代,我不知道未来还会有什么时代,只记得这一路走来,充满着艰辛与收获,愿同大家一起走下去,充满希望的走下去。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是调用卷积神经网络框架实现MNIST数据集分类的实验报告。 ## 实验目的 本实验的目的是通过调用卷积神经网络框架实现MNIST数据集分类,掌握卷积神经网络的基本原理、PyTorch框架的使用方法以及如何进行图像分类任务。 ## 实验环境 - 操作系统:Windows 10 - Python版本:3.7.9 - PyTorch版本:1.8.1 - GPU:NVIDIA GeForce RTX 2080 Ti ## 实验步骤 ### 1. 准备数据集 本实验采用的是MNIST数据集,它包含了一组手写数字图片,每张图片的大小为28x28像素,共有10个类别(0~9)。我们首先需要下载数据集并进行预处理,将像素值归一化到[-1, 1]的范围内,并将其转换为PyTorch所需的张量形式。 ### 2. 定义模型结构 本实验采用的是一个简单的卷积神经网络结构,包含两个卷积层和两个全连接层。卷积层用于提取图像的特征,全连接层用于将这些特征转换为分类结果。具体的模型结构如下所示: ``` Conv2d(1, 10, kernel_size=5) ReLU() MaxPool2d(kernel_size=2) Conv2d(10, 20, kernel_size=5) ReLU() MaxPool2d(kernel_size=2) Flatten() Linear(320, 50) ReLU() Linear(50, 10) LogSoftmax(dim=1) ``` ### 3. 定义优化器和损失函数 本实验采用的是随机梯度下降(SGD)优化器,并使用交叉熵损失函数作为模型的目标函数。 ### 4. 训练模型 在训练过程中,我们使用了小批量随机梯度下降的方法,每个批次包含64个样本。我们迭代了10个epoch,即将整个数据集训练了10次。 在每个epoch中,我们先将模型切换到“训练模式”,然后遍历整个训练集,计算每个批次的损失,并使用反向传播算法更新模型参数。在每个epoch结束后,我们将模型切换到“评估模式”,并使用测试集对模型进行测试,计算模型的准确率和损失。 ### 5. 测试模型 在测试过程中,我们使用了与训练过程相同的小批量随机梯度下降的方法,每个批次包含64个样本。我们将模型切换到“评估模式”,并使用测试集对模型进行测试,计算模型的准确率和损失。 ## 实验结果 经过10个epoch的训练,我们得到了如下的训练和测试结果: ``` Train Epoch: 1 [0/60000 (0%)] Loss: 2.294967 Train Epoch: 1 [6400/60000 (11%)] Loss: 2.129811 Train Epoch: 1 [12800/60000 (21%)] Loss: 1.015112 Train Epoch: 1 [19200/60000 (32%)] Loss: 0.563964 Train Epoch: 1 [25600/60000 (43%)] Loss: 0.374795 Train Epoch: 1 [32000/60000 (53%)] Loss: 0.273128 Train Epoch: 1 [38400/60000 (64%)] Loss: 0.287754 Train Epoch: 1 [44800/60000 (75%)] Loss: 0.225555 Train Epoch: 1 [51200/60000 (85%)] Loss: 0.275133 Train Epoch: 1 [57600/60000 (96%)] Loss: 0.201032 Test set: Average loss: 0.0008, Accuracy: 9653/10000 (97%) Train Epoch: 2 [0/60000 (0%)] Loss: 0.129528 Train Epoch: 2 [6400/60000 (11%)] Loss: 0.201662 Train Epoch: 2 [12800/60000 (21%)] Loss: 0.098371 Train Epoch: 2 [19200/60000 (32%)] Loss: 0.147419 Train Epoch: 2 [25600/60000 (43%)] Loss: 0.135704 Train Epoch: 2 [32000/60000 (53%)] Loss: 0.114637 Train Epoch: 2 [38400/60000 (64%)] Loss: 0.117565 Train Epoch: 2 [44800/60000 (75%)] Loss: 0.076122 Train Epoch: 2 [51200/60000 (85%)] Loss: 0.148452 Train Epoch: 2 [57600/60000 (96%)] Loss: 0.085035 Test set: Average loss: 0.0005, Accuracy: 9813/10000 (98%) ... Train Epoch: 10 [0/60000 (0%)] Loss: 0.024023 Train Epoch: 10 [6400/60000 (11%)] Loss: 0.025350 Train Epoch: 10 [12800/60000 (21%)] Loss: 0.033465 Train Epoch: 10 [19200/60000 (32%)] Loss: 0.019906 Train Epoch: 10 [25600/60000 (43%)] Loss: 0.011902 Train Epoch: 10 [32000/60000 (53%)] Loss: 0.013888 Train Epoch: 10 [38400/60000 (64%)] Loss: 0.024480 Train Epoch: 10 [44800/60000 (75%)] Loss: 0.016696 Train Epoch: 10 [51200/60000 (85%)] Loss: 0.010279 Train Epoch: 10 [57600/60000 (96%)] Loss: 0.023049 Test set: Average loss: 0.0004, Accuracy: 9884/10000 (99%) ``` 可以看出,经过10个epoch的训练,模型在测试集上的准确率达到了99%,表现非常优秀。 ## 实验结论 本实验主要是通过调用卷积神经网络框架实现MNIST数据集分类,掌握卷积神经网络的基本原理、PyTorch框架的使用方法以及如何进行图像分类任务。通过实验结果可以看出,使用卷积神经网络可以在MNIST数据集上达到很高的分类准确率,而PyTorch框架可以大大简化模型的搭建和训练过程,提高编程效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值