【线性代数系列】第五章 相似矩阵及二次型第2节--特征值特征向量相似矩阵定义性质权威总结

【线性代数系列】第五章 相似矩阵及二次型第2节–特征值特征向量相似矩阵定义性质权威总结

1. 定义

1.1 特征值特征向量

对于一个n×n的方阵 A A A,如果存在一个非零向量v和一个标量λ,使得下式成立:

A v = λ v Av = λv Av=λv
其中, v v v被称为矩阵A的特征向量 λ λ λ被称为矩阵A的特征值

换句话说,

  • 特征向量 v v v在经过矩阵A的线性变换后,结果与原来的向量只相差一个标量倍数λ
  • 特征值 λ λ λ表示了这个变换对应的缩放因子。
  • 特征向量通常是在非零向量的约束下确定的,即 v ≠ 0 v ≠ 0 v=0。特征值可以是实数或复数
  • 特征向量描述了矩阵变换后的不变方向,而特征值表示了对应的缩放因子

通过求解特征值问题,我们可以找到方阵的特征值和对应的特征向量。特征值和特征向量是方阵的固有性质,它们提供了关于矩阵的重要信息。这在许多领域中都有广泛的应用,如物理学、工程学、数据分析等。

1.2 相似矩阵

相似矩阵是指对于两个n×n的矩阵A和B,如果存在一个可逆矩阵P,使得
P − 1 A P = B P^{-1}AP = B P1AP=B
,那么称矩阵** A A A B B B是相似的, P P P是它们之间的相似变换**。

换句话说,

  • 两个矩阵 A A A B B B是相似的,当且仅当它们可以通过一个可逆矩阵的相似变换从一个转化为另一个。
  • 这个相似变换实质上是对矩阵进行线性变换,保持了它们之间的一些重要性质。

1.3 可逆矩阵

可逆矩阵是指一个方阵 A A A存在一个逆矩阵 A − 1 A^{-1} A1,使得A与 A − 1 A^{-1} A1的乘积等于单位矩阵 I I I

具体而言,对于一个 n × n n×n n×n的方阵A,如果存在一个 n × n n×n n×n的矩阵 A − 1 A^{-1} A1,满足以下条件:

A ⋅ A − 1 = A − 1 ⋅ A = I A·A^{-1} = A^{-1}·A = I AA1=A1A=I
其中, I I I n × n n×n n×n的单位矩阵,那么矩阵 A A A就被称为可逆矩阵。

1.4 奇异矩阵

奇异矩阵是指一个方阵 A A A没有逆矩阵的情况,也被称为非可逆矩阵。

具体而言,对于一个 n × n n×n n×n的方阵 A A A,如果不存在一个 n × n n×n n×n的矩阵 A − 1 A^{-1} A1,使得A与 A − 1 A^{-1} A1的乘积等于单位矩阵 I I I,则矩阵 A A A就被称为奇异矩阵。

1.5 矩阵的秩

A m x n A_{mxn} Amxn中,若

(1)有某个r阶子式 D r ≠ 0 D_r ≠ 0 Dr=0

(2)所有r+1阶子式 D r + 1 ≠ 0 D_{r+1} ≠ 0 Dr+1=0(如果有r+1阶子式的话)

称A的秩为r,记作 R ( A ) = r R(A)=r RA)=r。规定: R ( O ) = 0 R(O)=0 RO)=0.

A m x n A_{mxn} Amxn,若 R ( A ) = m R(A)=m RA)=m,称 A A A行满秩矩阵

R ( A ) = n R(A)=n RA)=n,称A为列满秩矩阵

A m x n A_{mxn} Amxn,若 R ( A ) = n R(A)=n RA)=n,称 A A A满秩矩阵(可逆矩阵,非奇异矩阵);

R ( A ) < n R(A)<n RA)<n,称A为降秩矩阵(不可逆矩阵,奇异矩阵)。

满秩矩阵是一个很重要的概念, 它是判断一个矩阵是否可逆的充分必要条件。

1.6 特征方程

特征方程和特征多项式是与矩阵的特征值问题密切相关的概念。

给定一个n×n的方阵A,特征方程是指通过求解下面的方程来确定矩阵A的特征值λ:

d e t ( A − λ I ) = 0 det(A - λI) = 0 det(AλI)=0
​ 其中, d e t det det表示行列式, A − λ I A - λI AλI是一个以特征值λ为参数的矩阵, I I I是单位矩阵。

特征方程可以看作是以特征值为未知数方程,通过使得方程的行列式为零,我们可以找到矩阵 A A A的特征值。

1.7 特征多项式

特征多项式是根据特征方程展开得到的多项式。它由特征方程的系数所构成,其中每个系数对应于特征方程中的一个特征值的幂次。

例如,对于一个n×n的方阵A,其特征方程可以表示为:

d e t ( A − λ I ) = ( − 1 ) n λ n + c n − 1 λ n − 1 + . . . + c 1 λ + c 0 = 0 det(A - λI) = (-1)^n λ^n + c_{n-1} λ^{n-1} + ... + c_1 λ + c_0 = 0 det(AλI)=(1)nλn+cn1λn1+...+c1λ+c0=0
其中, c n − 1 , . . . , c 1 , c 0 c_{n-1}, ..., c_1, c_0 cn1,...,c1,c0 是特征方程的系数。

特征多项式可以写成一般形式

p ( λ ) = ( − 1 ) n λ n + c n − 1 λ n − 1 + . . . + c 1 λ + c 0 p(λ) = (-1)^n λ^n + c_{n-1} λ^{n-1} + ... + c_1 λ + c_0 p(λ)=(1)nλn+cn1λn1+...+c1λ+c0
特征多项式是一个关于λ的多项式函数,它的根即为矩阵A的特征值

通过求解特征方程计算特征多项式的根,我们可以确定矩阵A的特征值和相应的特征向量。

特征方程和特征多项式是描述矩阵特征值问题的重要工具和概念。它们提供了一种系统的方法来寻找矩阵的特征值,并在各种领域中得到广泛应用,如线性代数、物理学、工程学和数据分析等。

1.8 迹(trace)

矩阵的迹(trace)是指方阵主对角线上元素的总和

对于一个n×n的方阵A,其迹可以表示为 t r ( A ) = a 11 + a 22 + . . . + a n n , tr(A) = a₁₁ + a₂₂ + ... + aₙₙ, tr(A)=a11+a22+...+ann其中 a i i aᵢᵢ aii表示矩阵 A A A的第 i i i行第 i i i列的元素。

1.8 方阵的对角化

对角化是指将一个方阵通过相似变换转化为对角矩阵的过程。具体而言,对于一个n×n的方阵A,如果存在一个可逆矩阵P,使得 P − 1 A P = D P^{-1}AP = D P1AP=D,其中 D D D是一个对角矩阵,那么称矩阵A可以被对角化,P是它的对角化矩阵。

对角化的定义可以进一步解释如下:

  • 存在可逆矩阵P:对角化要求存在一个可逆矩阵P,它用来进行相似变换。可逆矩阵保证了变换的可逆性唯一性

  • 相似变换:通过相似变换 P ( − 1 ) A P P^(-1)AP P(1)AP,将原始矩阵A转化为新的矩阵D。相似变换可以看作是对矩阵进行线性变换,保持了某些重要性质。

  • 对角矩阵:对角矩阵D是一种形式简单的矩阵,它的非零元素只出现在主对角线上。对角矩阵的对角线上的元素就是原始矩阵A的特征值

2. 性质

2.1 特征值和特征向量性质

2.1.1 特征向量的线性无关性:

不同特征值对应的特征向量是线性无关的。也就是说,如果一个矩阵A有k个不同的特征值,那么与这些特征值对应的特征向量构成的集合是线性无关的。

2.1.2 特征值的和和乘积:

一个n×n的方阵A的所有特征值的和等于它的迹(主对角线上元素之和),而特征值的乘积等于矩阵A的行列式。

2.1.3 特征值的变化对矩阵的影响:

特征值的大小和符号对矩阵的性质有重要影响。正特征值表示矩阵在相应特征向量方向上拉伸,负特征值表示压缩,而零特征值表示变换后的向量保持不变。

2.2 相似矩阵性质

相似矩阵具有以下一些重要性质:

2.2.1 特征值的相等性:

相似矩阵具有相同的特征多项式,从而相同的特征值。也就是说,如果A和B是相似矩阵,那么它们具有相同的特征多项式和特征值。

2.2.2 特征向量的对应性:

相似矩阵的特征向量也是对应的。如果v是矩阵A的一个特征向量,那么 P − 1 v P^{-1}v P1v是矩阵B的对应特征向量。

2.2.3 行列式和迹的相等性:

相似矩阵具有相等的行列式和迹。即,如果A和B是相似矩阵,则它们的行列式和迹相等。

2.2.4 幂运算的相似性:

相似矩阵具有相似的幂运算结果。即,如果A和B是相似矩阵,则对于任意正整数k,有
( A k ) = P − 1 ( B k ) P (A^k) = P^{-1}(B^k)P (Ak)=P1(Bk)P

2.3 方阵对角化判定性质

方阵对角化的判定性质包括以下几个重要结果:

  1. 可对角化的充要条件:一个 n × n n×n n×n的方阵 A A A可以被对角化的充要条件是,它需要具有n个线性无关的特征向量。

    换句话说,矩阵A可对角化当且仅当它存在一组由特征向量组成的满秩特征向量矩阵 P P P,使得 P − 1 A P P^{-1}AP P1AP为对角矩阵。

  2. 相似矩阵和对角化:如果两个 n × n n×n n×n的方阵A和B相似(即存在可逆矩阵 P P P,使得 P − 1 A P = B P^{-1}AP = B P1AP=B),那么它们具有相同的特征值和对角化性质。也就是说,如果A可以被对角化,那么与A相似的任何矩阵B也可以被对角化,并且它们具有相同的特征值。

  3. 重复特征值和多个线性无关特征向量:如果一个方阵A具有一个重复的特征值,并且能找到一组线性无关的特征向量组,那么矩阵A可以被对角化。这意味着,即使特征值重复,只要能找到线性无关的特征向量组,矩阵仍然可以被对角化;有时候无法找到线性无关的特征向量组,此时矩阵无法被对角化

2.4 迹的性质

是矩阵的一个重要特征,具有以下一些性质:

  1. 迹与相似矩阵:相似矩阵具有相同的迹。如果两个n×n的方阵A和B相似(即存在可逆矩阵P,使得P^(-1)AP = B),那么它们具有相同的迹,即tr(A) = tr(B)。

  2. 迹与特征值:矩阵的迹等于其特征值的和。对于一个n×n的方阵A,其特征值为λ₁, λ₂, …, λₙ,则tr(A) = λ₁ + λ₂ + … + λₙ。

2.5 可逆矩阵的性质

可逆矩阵 A − 1 A^{-1} A1是唯一的,当且仅当矩阵 A A A是可逆的。如果矩阵 A A A不可逆,则称它为奇异矩阵。

可逆矩阵的性质包括以下几点:

  1. 可逆矩阵的行列式不为零

    如果一个n×n的方阵A是可逆的,那么它的行列式 d e t ( A ) det(A) det(A)不为零。这也意味着非奇异矩阵的行列式总是非零的。

  2. 逆矩阵的逆矩阵是原矩阵

    如果矩阵 A A A是可逆的,那么它的逆矩阵 A − 1 A^{-1} A1也是可逆的,并且 ( A − 1 ) − 1 = A (A^{-1})^{-1} = A (A1)1=A

  3. 可逆矩阵的转置是可逆的:

    如果矩阵 A A A是可逆的,那么它的转置矩阵 A T A^T AT也是可逆的,并且 ( A T ) − 1 = ( A − 1 ) T (A^{T})^{-1} = (A^{-1})^T (AT)1=(A1)T

  4. 可逆矩阵的乘积是可逆的:

    如果矩阵 A A A B B B都是可逆的,那么它们的乘积 A B AB AB也是可逆的,并且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1

2.6 奇异矩阵性质

2.6.1 奇异矩阵的行列式 d e t ( A ) det(A) det(A)等于零。

这意味着奇异矩阵的行向量(或列向量)线性相关,无法通过矩阵运算找到它们的线性组合等于单位向量。

2.6.3 奇异矩阵的特征值中至少有一个为零。

由于特征值与行列式密切相关,因此当行列式为零时,至少有一个特征值为零。

2.6.4 奇异矩阵在某些情况下可能表示系统存在多个解、无解或无唯一解。

例如,在求解线性方程组时,如果系数矩阵是奇异的,那么方程组可能没有解,或者有无穷多个解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BigDataMLApplication

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值