人民币有1、2、5、10、20、50、100这几种面值。
现在给你n(1≤n≤250)元,让你计算换成用上面这些面额表示且总数不超过100张,共有几种。
比如4元,能用4张1元、2张1元和1张2元、2张2元,三种表示方法。
输入有多组,每组一行,为一个整合n。
输入以0结束。
输出该面额有几种表示方法。
使用动态规划解决:
#include <iostream>
#include<string>
#include<vector>
#include<algorithm>
#include <fstream>
using namespace std;
int money[7] = { 1, 2, 5, 10, 20, 50, 100 };
long int dp[7][250];
int main()
{
int i, j, n;
for (i = 0; i < 7; i++)
{
dp[i][0] = 1;
}
for (i = 0; i < 250; i++) //以上两个循环为,当钱的类型为1时,都只有一种零钱方法,即全部为1块的
{
dp[0][i] = 1;
}
for (i = 1; i < 7; i++)//代表零钱类型,
{
for (j = 1; j < 250; j++)//j代表输入的钱数
{
if (j - money[i] >= 0)
dp[i][j] = dp[i][j-money[i]] + dp[i-1][j]; //最优子结构,dp[i-1][j]:钱数为j,在i-1的钱类型时拥有的最大分配种数。
//dp[i][j-money[i]]:钱数为j-money[i],在i的钱类型时拥有的最大分配种数,因为是累积关系,所以要加上dp[i-1][j]
else
dp[i][j] = dp[i-1][j];
}
}
while (cin >> n && n != 0)
{
cout << "类型总数 = " << dp[6][n] << endl;
}
return 0;
}