近几年随着大数据和人工智能介入,通过采用支持向量机、神经网络等机器学习算法训练数据集来构建模型,以预测材料的结构、吸附特性、电学特性、催化性能、力学特性和热力学特性等性能,大大推动了新型材料的发现和传统材料的更新,预测结果甚至能够达到与高保真模型基本相同的精度,且计算成本很低。然而,机器学习在材料科学中的应用仍存在一些瓶颈,人工智能研究项目所需的技能和知识匮乏缺失制约着该方向的发展。
进阶阶段主要有五部分:深度学习神经网络、经典机器学习模型、材料数据库及特征工程、图神经网络与实践、机器学习+Science五个模块
主要学习内容有
一、机器学习导论
二、Python语言基础
三、深度学习网络神经
四、经典机器学习模型及应用
五、材料数据库及特征工程
六、图神经网络入门及实践
七、机器学习+Science
八、应用实例