机器学习在材料结构与性能预测中的应用

机器学习算法如支持向量机和神经网络被用于预测材料的结构和各种性能,加速新材料的研发。尽管存在技能短缺的挑战,但深度学习、经典机器学习、材料数据库和图神经网络等领域的学习将推进这一领域的发展。应用实例涵盖催化、太阳能电池材料筛选和无机材料性能预测等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近几年随着大数据和人工智能介入,通过采用支持向量机、神经网络等机器学习算法训练数据集来构建模型,以预测材料的结构、吸附特性、电学特性、催化性能、力学特性和热力学特性等性能,大大推动了新型材料的发现和传统材料的更新,预测结果甚至能够达到与高保真模型基本相同的精度,且计算成本很低。然而,机器学习在材料科学中的应用仍存在一些瓶颈,人工智能研究项目所需的技能和知识匮乏缺失制约着该方向的发展。

进阶阶段主要有五部分:深度学习神经网络、经典机器学习模型、材料数据库及特征工程、图神经网络与实践、机器学习+Science五个模块

主要学习内容有

一、机器学习导论

二、Python语言基础

三、深度学习网络神经

四、经典机器学习模型及应用

五、材料数据库及特征工程

六、图神经网络入门及实践

七、机器学习+Science

八、应用实例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值