畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 46688 Accepted Submission(s): 24852
Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
Sample Output
1 0 2 998Huge input, scanf is recommended.HintHint
初学,先上图
#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,fa[10010];
void init() // 初始化操作
{
for(int i=1;i<=n;i++)
fa[i]=i;
}
int findroot(int x) // 递归实现路径压缩,查找根节点
{
if(x==fa[x])
return x;
fa[x]=findroot(fa[x]);
return fa[x];
}
void Union(int x,int y) // 集合的合并
{
int nx=findroot(x);
int ny=findroot(y);
if(nx!=ny)
{
fa[ny]=nx;
}
}
int main()
{
while(scanf("%d",&n)&&n)
{
init();
int a,b;
scanf("%d",&m);
while(m--)
{
scanf("%d %d",&a,&b);
Union(a,b);
}
int ans=0;
for(int i=1;i<=n;i++)
{
if(fa[i]==i) // 这个表示是没修的路 修过的路 fa[i] 都等于最顶端的父节点的值
ans++;
}
printf("%d\n",ans-1); // 这里 ans-1 是因为之前多计算了一个 最顶端的父节点他本身
}
return 0;
}