2.交换排序(冒泡排序和快速排序)

交换排序(冒泡排序和快速排序)

基于交换的排序算法有两种:冒泡排序和快速排序。

冒泡排序

冒泡排序算法描述:比较相邻两个元素大小,如果反序,则交换。若按升序排列,每趟将数据序列中的最大元素交换到最后位置,就像气泡从水里冒出一样。

冒泡排序算法分析:

  • 最好情况,数据序列排序,只需一趟扫描,比较n次,没有数据移动,时间复杂度为O(n)。最坏情况,数据序列随机排列和反序排列,需要n-1趟扫描,比较次数和移动次数都是O(n^ 2),时间复杂度为(n^ 2)。总之,数据序列越接近有序,冒泡排序算法时间效率越高,在O(n)到O(n^2)之间。
  • 冒泡排序需要一个辅助空间用于交换两个元素,空间复杂度为O(1)。

冒泡排序算法是稳定的。

一个冒泡排序的过程图:

冒泡排序算法如下:

package book;

/**
 * 交叉排序(升序)
 */
public class crossSort {

    public static void main(String[] args) {
        int[] keys = {32,26,87,72,26,17};
        int[] keys2 = {2,3,1,5,7,4,6};
        bubbleSort1(keys2);
        print(keys2);
        System.out.println();
        System.out.println("-----------------------");

        int[] keys3 = {2,3,1,5,7,4,6};
        bubbleSort2(keys3);
        print(keys3);
        System.out.println();
        System.out.println("-----------------------");

        int[] keys4 = {2,3,1,5,7,4,6};
        bubbleSort3(keys4);
        print(keys4);

    }

    //冒泡排序1
    public static void bubbleSort1(int[] keys) {
        //外层循环控制轮数
        for (int i = keys.length-1; i > 0; i--) {
            //内层循环,比较大小,做交换
            for (int j = 0; j < i; j++) {
                if (keys[j] > keys[j + 1]) {
                    swap(keys, j, j+1);
                }
                System.out.format("第 %d 遍第%d 趟结果:", keys.length-i, j+1);
                for(int count:keys) {
                    System.out.print(count);
                    System.out.print(",");
                }
                System.out.println("");
            }
        }

    }

    //冒泡排序2-第一次优化(减少外循环)
    //我们设置一个标志位,用来表示当前第 i 趟是否有交换,如果有则要进行 i+1 趟,
    //如果没有,则说明当前数组已经完成排序,省去无用循环
    public static void bubbleSort2(int[] keys) {

        //外层循环控制轮数
        for (int i = keys.length-1; i > 0; i--) {
            //标志位 1代表没有交换,0代表发生了交换
            int flag = 1;

            //内层循环,比较大小,做交换
            for (int j = 0; j < i; j++) {
                if (keys[j] > keys[j + 1]) {
                    swap(keys, j, j+1);
                    flag = 0;
                }
                System.out.format("第 %d 遍第%d 趟结果:", keys.length-i, j+1);
                for(int count:keys) {
                    System.out.print(count);
                    System.out.print(",");
                }
                System.out.println("");
            }
            //说明上一轮的比较没有交换元素,可以直接结束循环
            if (flag == 1) {
                break;
            }
        }

    }

    //冒泡排序2-第二次优化(减少外循环,减少内循环)
    //在增加标志位,确认下一次是否还需要循环的基础上
    //问题:就是第 i 趟排的第 i 小或者大的元素已经在第 i 位上了,
    //     甚至可能第 i-1 位也已经归位了,
    //     那么在内层循环的时候,有这种情况出现就会导致多余的比较出现,
    //     因为这些比较没有发生交换操作
    //解决:针对上述的问题,我们可以利用一个标志位,记录一下当前第 i 趟所交换的最后一个位置的下标,
    //在进行第 i+1 趟的时候,只需要内循环到这个下标的位置就可以了,
    //因为后面位置上的元素在上一趟中没有换位,这一次也不可能会换位置了
    public static void bubbleSort3(int[] keys) {
        int len = keys.length-1;
        //记录最后一次交换的位置
        int tempPostion = 0;

        //外层循环控制轮数(要遍历的次数)
        for (int i = 0; i < len; i++) {
            //标志位 1代表没有交换,0代表发生了交换
            int flag = 1;

            //内层循环,比较大小,做交换
            for (int j = 0; j < len-i; j++) {
                if (keys[j] > keys[j + 1]) {
                    swap(keys, j, j+1);
                    flag = 0;
                    tempPostion = j;//记录交换的位置
                }
                System.out.format("第 %d 遍第%d 趟结果:", i+1, j+1);
                for(int count:keys) {
                    System.out.print(count);
                    System.out.print(",");
                }
                System.out.println("");
            }
            //把最后一次交换的位置给len,来缩减内循环的次数
            len = tempPostion;
            //说明上一轮的比较没有交换元素,则已经有序,可以直接结束循环
            if (flag == 1) {
                break;
            }
        }

    }

    //交换
    static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    //打印
    static void print(int[] arr){
        for (int i : arr) {
            System.out.print(i+",");
        }
    }
}
//看一下输出结果:1 遍第1 趟结果:2,3,1,5,7,4,6,1 遍第2 趟结果:2,1,3,5,7,4,6,1 遍第3 趟结果:2,1,3,5,7,4,6,1 遍第4 趟结果:2,1,3,5,7,4,6,1 遍第5 趟结果:2,1,3,5,4,7,6,1 遍第6 趟结果:2,1,3,5,4,6,7,2 遍第1 趟结果:1,2,3,5,4,6,7,2 遍第2 趟结果:1,2,3,5,4,6,7,2 遍第3 趟结果:1,2,3,5,4,6,7,2 遍第4 趟结果:1,2,3,4,5,6,7,2 遍第5 趟结果:1,2,3,4,5,6,7,3 遍第1 趟结果:1,2,3,4,5,6,7,3 遍第2 趟结果:1,2,3,4,5,6,7,3 遍第3 趟结果:1,2,3,4,5,6,7,3 遍第4 趟结果:1,2,3,4,5,6,7,4 遍第1 趟结果:1,2,3,4,5,6,7,4 遍第2 趟结果:1,2,3,4,5,6,7,4 遍第3 趟结果:1,2,3,4,5,6,7,5 遍第1 趟结果:1,2,3,4,5,6,7,5 遍第2 趟结果:1,2,3,4,5,6,7,6 遍第1 趟结果:1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
-----------------------1 遍第1 趟结果:2,3,1,5,7,4,6,1 遍第2 趟结果:2,1,3,5,7,4,6,1 遍第3 趟结果:2,1,3,5,7,4,6,1 遍第4 趟结果:2,1,3,5,7,4,6,1 遍第5 趟结果:2,1,3,5,4,7,6,1 遍第6 趟结果:2,1,3,5,4,6,7,2 遍第1 趟结果:1,2,3,5,4,6,7,2 遍第2 趟结果:1,2,3,5,4,6,7,2 遍第3 趟结果:1,2,3,5,4,6,7,2 遍第4 趟结果:1,2,3,4,5,6,7,2 遍第5 趟结果:1,2,3,4,5,6,7,3 遍第1 趟结果:1,2,3,4,5,6,7,3 遍第2 趟结果:1,2,3,4,5,6,7,3 遍第3 趟结果:1,2,3,4,5,6,7,3 遍第4 趟结果:1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
-----------------------1 遍第1 趟结果:2,3,1,5,7,4,6,1 遍第2 趟结果:2,1,3,5,7,4,6,1 遍第3 趟结果:2,1,3,5,7,4,6,1 遍第4 趟结果:2,1,3,5,7,4,6,1 遍第5 趟结果:2,1,3,5,4,7,6,1 遍第6 趟结果:2,1,3,5,4,6,7,2 遍第1 趟结果:1,2,3,5,4,6,7,2 遍第2 趟结果:1,2,3,5,4,6,7,2 遍第3 趟结果:1,2,3,5,4,6,7,2 遍第4 趟结果:1,2,3,4,5,6,7,3 遍第1 趟结果:1,2,3,4,5,6,7,
1,2,3,4,5,6,7,

快速排序

快速排序是一种分区交换排序算法。

首先分析一下冒泡排序,在冒泡排序中存在这样一种情况:如上面冒泡排序中在序列{32,26,87,72,26,17}中,元素87在相邻位置间经过若干次连续的交换到达最终位置,元素87移动了多次才到达最终位置,存在重复的数据移动。快速排序算法希望尽可能地减少这样重复的数据移动。

快速排序(Quick Sort)算法描述:在数据序列中选择一个元素作为基准值,每趟从数据序列的两端开始交替进行,将小于基准值的元素交换到序列前端,将大于基准值的元素交换到序列后端,介于两者之间的位置则成为基准值的最终位置。同时,序列被划分成两个子序列,再分别对两个子序列进行快速排序,直到子序列长度为1,则完成排序。

一个快速排序案例分析:

关键字序列{38,38,97,75,61,19,26,49}快速排序(升序)一趟划分过程如下图所示,{}表示待排序子序列。

对存于keys数组begin~end之间的子序列进行一趟快速排序,设i、j下标分别从子序列的前后两端开始,i=begin, j=end,划分算法描述如下:

  • 1、选取子序列第一个元素keys[i] 38作为基准值vot,空出keys[i]元素位置。

  • 2、在子序列后端寻找小于基准值的元素,交换到序列前端。即比较keys[j]元素26与基准值,若小则将keys[j]元素26移动到序列前端keys[i]位置,i++,此时keys[j]位置空出。

  • 3、在子序列前端寻找大于基准值的元素,交换到序列后端。再比较keys[i]元素与基准值,若大则将keys[i]元素97移动到序列后端的keys[j]位置,j–,keys[i]位置空出。不移动与基准值相等元素。(其实对于以上步骤2 3 也可以同时进行,将 一个比一个比基准数小的 与 一个比基准数大的 做交换。)

  • 4、重复执行2 3,直到i==j【这就是临界条件】,表示子序列中的每个元素都与基准值比较过了,并已将小于基准值的元素移动到前端,将大于基准值的元素移动到后端,当前 i(j) 位置则是基准值的最终位置。观察上图的数据移动情况,一趟划分过程中,只用6次赋值,就使5个元素移动位置。

  • 5、一趟快速排序将数据序列划分成两个子序列,范围分别为begin~j-1、i+1~end。每个子序列均较短,再对两个子序列分别进行快速排序【需要递归】,直到子序列长度为1【算法结束的条件】。

  • 这里要注意的是:因为第一步选择的序列的第一个元素为轴(基准数),所以第二步中是从后往前找比基准数小的来填充基准数的位置(不能先从前往后找比基准数大的,因为找到的数没有地方存放,如果硬要放,就会改变序列中的值);如果一开始选择的是序列中最后一个数来作为基准数,那么应该先从前往后找比基准数大的,再从后往前找比基准数小。

上述数据序列的快速排序(升序)过程如下图所示,{}表示待排序子序列。

快速排序算法采用分治策略对两个子序列再分别进行快速排序,因此,快速排序是递归算法

快速排序算法:

package book;

/**
 * 交叉排序(升序) 只有快速排序
 *
 */
public class crossSort2 {

    public static void main(String[] args) {
        int[] keys = {38,38,97,75,61,19,26,49};
        int[] keys2 = {7,3,2,6,8,1,9,5,4,6,10,6};

        quickSort(keys,0,keys.length-1);

        //quickSortBook(keys);
        print(keys);
    }

	//quickSortBook 是按照上面的分析步骤实现的。
    public static void quickSortBook(int[] keys){
        System.out.println("快速排序(升序)");
        quickSortBook(keys, 0, keys.length-1);
    }
    //对存于keys数组begin~end之间的子序列进行一趟快速排序,递归算法
    private static void quickSortBook(int[] keys, int begin, int end) {
        //序列有效
        if (begin>=0 && begin<keys.length && end>=0 && end<keys.length && begin<end){
            int i=begin, j=end; //i、j下标分别从子序列的前后两端开始
            int vot=keys[i];   //子序列第一个值作为基准值
            while (i!=j) {
                //(升序)从后向前寻找比基准数小值,不移动与基准值相等元素
                while (i<j && keys[j]>=vot) j--;  
                if (i<j){
                    keys[i++]=keys[j];  //子序列后端较小元素向前移动
                }

                //(升序)从前向后寻找比基准数大值,不移动与基准值相等元素
                while (i<j && keys[i]<=vot) i++; 
                if (i<j){
                    keys[j--]=keys[i];  //子序列前端较大元素向后移动
                }
            }
            keys[i]=vot;  //基准值到达最终位置
            System.out.print("下标"+begin+"~"+end+", vot="+vot+",  ");
            print(keys);
            System.out.println();
            quickSortBook(keys, begin, j-1); //前端子序列再排序,递归调用
            quickSortBook(keys, i+1, end); //后端子序列再排序,递归调用
        }
    }
    
//quickSort 的逻辑是 将上面步骤2 3同时进行,将 一个比基准数小的 与 一个比基准数大的 做交换。
    public static void quickSort(int[] keys, int begin, int end){
        if (begin >= end) return; //数组只有一个元素
         int mid = pritition1(keys, begin, end); //轴(基准数)的位置
        //int mid = pritition2(keys, begin, end); //轴(基准数)的位置
       
        quickSort(keys, begin, mid-1);//对左区间进行快速排序
        quickSort(keys, mid+1, end);//对右区间进行快速排序
    }

     public static int pritition1(int[] keys, int begin, int end){
        int vot = keys[begin];//以数组第一个元素为基准
        int left = begin + 1;//这里减+1 是因为排除基准数
        int right = end;

        //这里left <= right中的 = 是为了防止只有两个数时不走循环
        while (left <= right) {

            while (left <= right && keys[left] <= vot)  //加上left <= right 防止下标越界
                left++;                                  //从前向后找一个比基准数大的
            while (left <= right && keys[right] > vot)
                right--;                                  //从后向前找一个比基准数小的
            if (left < right) {
                //将找到的 一个比基准数小的 与 一个比基准数大的 做交换
                swap(keys, left, right);
            }
        }
         //一趟走完,将基准数放在两个序列之间(它该去的地方),而right就是它的位置
        swap(keys, right, begin);

        return right;//返回基准数的位置
    }

    public static int pritition2(int[] keys, int begin, int end){
        int vot = keys[end];//以数组最后一个元素为基准
        int left = begin;
        int right = end - 1;//这里减-1 是因为排除基准数

        //这里left <= right中的 = 是为了防止只有两个数时不走循环
        while (left <= right) {
            //加上left <= right 防止下标越界
            while (left <= right && keys[left] <= vot)
                left++; //从前向后找一个比基准数大的
            while (left <= right && keys[right] > vot)
                right--; //从后向前找一个比基准数小的
            if (left < right) {
                //将找到的 一个比基准数小的 与 一个比基准数大的 做交换
                swap(keys, left, right);
            }
        }
        //一趟走完,将基准数放在两个序列之间(它该去的地方),而left就是它的位置
        swap(keys, left, end);

        return left;//返回基准数的位置
    }

   
    //交换
    static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    //打印
    static void print(int[] arr){
        for (int i : arr) {
            System.out.print(i+",");
        }
    }
}

快速排序算法分析

快速排序的执行时间与数据序列的初始排列及基准值的选取有关,分析如下。

  • 最好情况,每趟排序将序列分成长度相近的两个子序列,时间复杂度为O(n×log2n)。

  • 最坏情况,每趟将序列分成长度差异很大的两个子序列,时间复杂度为O(n^2)。

    • 例如,设一个排序数据序列有n个元素,若选取序列的第一个值作为基准值,则第一趟得到的两个子序列长度分别为 0 和 n-1,这样必须经过n-1趟才能完成排序,因此,比较次数C越等于(n^2)/2

快速排序选择基准值还有其他多种方法,如可以选取序列的中间值等。但由于序列的初始排列是随机的,不管如何选择基准值,总会存在最坏情况。

此外,快速排序还要在执行递归函数过程中花费一定的时间和空间,使用栈保存参数,栈所占用的空间与递归调用的次数有关,空间复杂度为O(log2n)~O(n)。

总之,当n较大且数据序列随机排列时,快速排序是“快速”的;当n很小或基准值选取不合适时,快速排序则较慢。快速排序算法是不稳定的。

快速排序改进-双轴快排

上述快速排序的思想是:找到一个轴(基准数),比轴小的放左边,比轴大的放右边,然后把轴放中间,之后在左序列和右序列中再执行以上步骤,直到子序列长度为1,则完成排序。

双轴快排的设计思想:找两个轴(两个基准数m,n),整个序列被分为三部分,<m 的在左边,>=m and <= n的在中间,>n的在右边,前提是:m < n。

我们来看一下java源码:Arrays.sort()。

Arrays.sort();
public class Arrays {
    public static void sort(int[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }
}

final class DualPivotQuicksort {
    /**
     * The maximum number of runs in merge sort.
     */
    private static final int MAX_RUN_COUNT = 67;
    
    /**
     * If the length of an array to be sorted is less than this
     * constant, Quicksort is used in preference to merge sort.
     */
    private static final int QUICKSORT_THRESHOLD = 286;
    
    /**
     * If the length of an array to be sorted is less than this
     * constant, insertion sort is used in preference to Quicksort.
     */
    private static final int INSERTION_SORT_THRESHOLD = 47;
    
    /**
     * Sorts the specified range of the array using the given
     * workspace array slice if possible for merging
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param work a workspace array (slice)
     * @param workBase origin of usable space in work array
     * @param workLen usable size of work array
     */
    static void sort(int[] a, int left, int right,
                     int[] work, int workBase, int workLen) {
        // Use Quicksort on small arrays
        //如果数组长度小于286,使用之前的快速排序算法
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        //检查这个数组是否适合用teamsort(一种改进的归并排序)
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            //不适合用teamsort,用快速排序
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        // Implementation note: variable "right" is increased by 1.
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        // Determine alternation base for merge
        byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        // Use or create temporary array b for merging
        int[] b;                 // temp array; alternates with a
        int ao, bo;              // array offsets from 'left'
        int blen = right - left; // space needed for b
        if (work == null || workLen < blen || workBase + blen > work.length) {
            work = new int[blen];
            workBase = 0;
        }
        if (odd == 0) {
            System.arraycopy(a, left, work, workBase, blen);
            b = a;
            bo = 0;
            a = work;
            ao = workBase - left;
        } else {
            b = work;
            ao = 0;
            bo = workBase - left;
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                        b[i + bo] = a[p++ + ao];
                    } else {
                        b[i + bo] = a[q++ + ao];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i + bo] = a[i + ao]
                );
                run[++last] = right;
            }
            int[] t = a; a = b; b = t;
            int o = ao; ao = bo; bo = o;
        }
    }
    
    
    
    
     /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     */
    //快速排序
    private static void sort(int[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        //数组长度是否小于47,小于就用插入排序
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    int ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                //双插入排序
                for (int k = left; ++left <= right; k = ++left) {
                    int a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                int last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        //下面是取轴的过程,将数组长度除7 为步长(1/7为多大)
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        //取数组最后一个元素下表,减去步长得到一个数,再减步长得到一个数...
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        //将找到的五个数排好序
        if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        //下面从五个数中根据具体情况得到两个轴
        // Pointers
        //两个轴
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /* 如果五个数都不想等,取第二个和第四个数为轴
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            int pivot1 = a[e2];
            int pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            //找到两个轴之后,往三个分区中移动元素
            outer:
            for (int k = less - 1; ++k <= great; ) {
                int ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    int ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            //递归继续排
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            //刚刚那五个数中有相等的,去第三个为轴,做快速排序
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            int pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                int ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = pivot;
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悬浮海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值