【NO.81】LeetCode HOT 100—337. 打家劫舍 III

文章介绍了如何使用动态规划方法解决LeetCode问题337——打家劫舍III,通过后序遍历二叉树,计算每个节点选或不选时的最大金额,最后返回整个树中两种情况下的最大值。优化方案提出使用数组存储左右子节点的选/不选结果,减少空间复杂度。
摘要由CSDN通过智能技术生成

题目: 337. 打家劫舍 III

小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

示例 1:

在这里插入图片描述

输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2:

在这里插入图片描述

输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9

提示:

树的节点数在 [1, 104] 范围内
0 <= Node.val <= 104

解题

方法 动态规划

分析:对于一个节点node,可以选,也可以不选,用f(node)表示选时可以盗取的最大金额,用g(node)表示不选时可以盗取的最大金额

  • node被选时,那node.left和node.right不能选,f(node) = node.val + g(node.left) + g(node.right)
  • node不被选时,那node.left和node.right可选可不选,两种情况下取最大的,g(node) = max(f(node.left),g(node.left)) + max(f(node.right),g(node.right))
  • 最终,node 选与不选,两种情况下取最大的
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
 // 时间n,空间n
class Solution {

    Map<TreeNode, Integer> f = new HashMap<>();
    Map<TreeNode, Integer> g = new HashMap<>();

    public int rob(TreeNode root) {
        dfs(root);
        return Math.max(f.getOrDefault(root, 0), g.getOrDefault(root, 0));
    }

    // 后续遍历
    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }

        dfs(root.left);
        dfs(root.right);
        f.put(root, root.val + g.getOrDefault(root.left, 0) + g.getOrDefault(root.right, 0));
        g.put(root, Math.max(f.getOrDefault(root.left, 0), g.getOrDefault(root.left, 0)) + Math.max(f.getOrDefault(root.right, 0), g.getOrDefault(root.right, 0)));

    }
}

优化,上述过程,只用到了左右孩子节点的选与不选的结果值,所以用数组保存下对应的这两个值,可以省去哈希表的空间。我们可以选数组,第一个元素表示选的值,第二个元素表示不选的值

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int rob(TreeNode root) {
        
        int[] res = dfs(root);
        return Math.max(res[0], res[1]);
    }

    // 后序遍历
    private int[] dfs(TreeNode root) {
        if (root == null) {
            return new int[]{0, 0};
        }
        // 得到左右子孩子选还是不选的结果
        int[] leftAns = dfs(root.left);
        int[] rightAns = dfs(root.right);
        // 开始计算当前节点,选还是不选的结果
        int select = root.val + leftAns[1] + rightAns[1];
        int notSelect = Math.max(leftAns[0], leftAns[1]) + Math.max(rightAns[0], rightAns[1]);
        return new int[]{select, notSelect}; 
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悬浮海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值