题目: 337. 打家劫舍 III
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。
除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
示例 1:
输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2:
输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9
提示:
树的节点数在 [1, 104] 范围内
0 <= Node.val <= 104
解题
方法 动态规划
分析:对于一个节点node,可以选,也可以不选,用f(node)表示选时可以盗取的最大金额,用g(node)表示不选时可以盗取的最大金额
- node被选时,那node.left和node.right不能选,f(node) = node.val + g(node.left) + g(node.right)
- node不被选时,那node.left和node.right可选可不选,两种情况下取最大的,g(node) = max(f(node.left),g(node.left)) + max(f(node.right),g(node.right))
- 最终,node 选与不选,两种情况下取最大的
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
// 时间n,空间n
class Solution {
Map<TreeNode, Integer> f = new HashMap<>();
Map<TreeNode, Integer> g = new HashMap<>();
public int rob(TreeNode root) {
dfs(root);
return Math.max(f.getOrDefault(root, 0), g.getOrDefault(root, 0));
}
// 后续遍历
private void dfs(TreeNode root) {
if (root == null) {
return;
}
dfs(root.left);
dfs(root.right);
f.put(root, root.val + g.getOrDefault(root.left, 0) + g.getOrDefault(root.right, 0));
g.put(root, Math.max(f.getOrDefault(root.left, 0), g.getOrDefault(root.left, 0)) + Math.max(f.getOrDefault(root.right, 0), g.getOrDefault(root.right, 0)));
}
}
优化,上述过程,只用到了左右孩子节点的选与不选的结果值,所以用数组保存下对应的这两个值,可以省去哈希表的空间。我们可以选数组,第一个元素表示选的值,第二个元素表示不选的值
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rob(TreeNode root) {
int[] res = dfs(root);
return Math.max(res[0], res[1]);
}
// 后序遍历
private int[] dfs(TreeNode root) {
if (root == null) {
return new int[]{0, 0};
}
// 得到左右子孩子选还是不选的结果
int[] leftAns = dfs(root.left);
int[] rightAns = dfs(root.right);
// 开始计算当前节点,选还是不选的结果
int select = root.val + leftAns[1] + rightAns[1];
int notSelect = Math.max(leftAns[0], leftAns[1]) + Math.max(rightAns[0], rightAns[1]);
return new int[]{select, notSelect};
}
}