53. 最大子数组和
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组
是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
提示:
1 <= nums.length <= 10^5
-10^ 4 <= nums[i] <= 10^ 4
解题
方法一:动态规划
动态规划,f(i) 为以第i个数结束的,也就是在范围从第一个到第i个数,这些数的 连续子数组的最大和。
那么状态转移方程就是: f(i) = max(f(i-1)+nums[i] , nums[i]), 确定了第i-1个数结束的连续子数组的最大和,第i个就可以得到。
然后再用一个变量记录,所有f(i) 中最大的那个。
// 时间n,空间n(可优化到O(1),因为dp[i] 只与dp[i-1]有关,所以可以用一个参数记录dp[i-1]的值)
class Solution {
public int maxSubArray(int[] nums) {
int maxSum = nums[0];
int n = nums.length;
int[] dp = new int[n];
dp[0] = nums[0];
for (int i = 1; i < n; i++) {
dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);
maxSum = Math.max(maxSum, dp[i]);
}
return maxSum;
}
}
方法二:前缀和
// 时间O(n),空间O(1)
class Solution {
public int maxSubArray(int[] nums) {
int ans = Integer.MIN_VALUE;
int minPreSum = 0;
int preSum = 0;
for (int x : nums) {
// 当前的前缀和
preSum += x;
// 减去前缀和的最小值
ans = Math.max(ans, preSum - minPreSum);
// 维护前缀和的最小值
minPreSum = Math.min(minPreSum, preSum);
}
return ans;
}
}