【NO.24】LeetCode HOT 100—53. 最大子数组和

53. 最大子数组和

53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组
是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

1 <= nums.length <= 10^5
-10^ 4 <= nums[i] <= 10^ 4

解题

方法一:动态规划

动态规划,f(i) 为以第i个数结束的,也就是在范围从第一个到第i个数,这些数的 连续子数组的最大和。

那么状态转移方程就是: f(i) = max(f(i-1)+nums[i] , nums[i]), 确定了第i-1个数结束的连续子数组的最大和,第i个就可以得到。

然后再用一个变量记录,所有f(i) 中最大的那个。

//  时间n,空间n(可优化到O(1),因为dp[i] 只与dp[i-1]有关,所以可以用一个参数记录dp[i-1]的值)
class Solution {
    public int maxSubArray(int[] nums) {

        int maxSum = nums[0];
        int n = nums.length;
        int[] dp = new int[n];
        dp[0] = nums[0];
        for (int i = 1; i < n; i++) {
            dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);
            maxSum = Math.max(maxSum, dp[i]);
        }

        return maxSum;

    }
}

方法二:前缀和

// 时间O(n),空间O(1)
class Solution {
    public int maxSubArray(int[] nums) {
        int ans = Integer.MIN_VALUE;
        int minPreSum = 0;
        int preSum = 0;
        for (int x : nums) {
        	// 当前的前缀和
            preSum += x; 
            // 减去前缀和的最小值
            ans = Math.max(ans, preSum - minPreSum); 
            // 维护前缀和的最小值
            minPreSum = Math.min(minPreSum, preSum); 
        }
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悬浮海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值