深度学习
1
油炸冰可乐
程序小白成长博客
展开
-
目标检测网络的评价指标mAP
目标检测网络的评价指标mAP前言项目介绍知识学习1 IoU2 混淆矩阵(TP、TN、FP、FN)3 Precision(精确度) 和 Recall(召回率)4 关于上面的一个例子5 PR曲线绘制前言如何对不同的模型网络进行评估?这时候就对检测的模型进行分类二了,当检测模型只对单一目标进行检测,例如人脸识别,这时候用到的就是AP指标;当检测模型对多个目标进行分类时,例如模型对VOC数据集进行多分类(>1)时,此时用到的评价指标就是mAP,mAP就是所有不同类的AP值求平均。那么AP到底是什么,m原创 2020-10-20 20:41:17 · 1445 阅读 · 0 评论 -
安装CUDA&Cudnn下的框架pytorch=1.2深度学习环境配置
pytorch环境配置1 CUDA&Cudnn安装cuda和Cudnn作为系统层面工具,我参考的是这篇博客进行安装的,我的配置是Win10,RXT2060显卡(1)CUDA版本是10.0,CUDA安装官网,需要用邮件注册一下才能下载哦!(2)Cudnn版本为7.4.15Cudnn官网直接下载就行。安装完成后,解压cudnn之后,将cudnn里的(1)bin(2)include(3)lib提供的文件复制进cuda的安装目录,例如C:\Program Files\NVIDIA GPU原创 2020-10-20 09:31:19 · 395 阅读 · 0 评论 -
关于深度学习网络的发展概述(浓缩版)
深度学习网络的发展概述CNNR-CNNFast R-CNNFaster R-CNNYOLO/SSD1 CNN诞生相比较于传统的HOG+SVM方法而言是一种新的方法,用来识别目标,例如用来识别MNIST数据集,有不错的成绩基本思想局部感受野、权值共享、池化、滤波器、损失函数、特征提取解决的问题完成了图片的分类任务2 R-CNN诞生在神经网络训练之前加入建议候选框(region proposal)层,所以新的网络被分为两个部分:候选框+神经网络基本思想region prop原创 2020-10-19 09:06:05 · 373 阅读 · 0 评论 -
Mask RCNN学习笔记
Mask RCNN学习笔记1 Mask RCNN开篇前的几个问题1.1 Mask RCNN 沿用思想&Faster RCNN中暴露的问题1.2 FPN层1.3 Mask分支1.4 ROI Align1.5 全卷积层(FCN)和CNN网络里的全连接层1.6 语义分割与实例分割的区别1.7 Mask RCNN 数据集的标注问题2 网络整体结构2.1 ResNet-FPN 处理流程说明2.2 ResNet-FPN + RPN2.3 ResNet-FPN + RPN + Faster RCNN + M原创 2020-10-16 10:00:54 · 573 阅读 · 0 评论 -
Faster R-CNN 整体流程介绍
Faster R-CNN整体流程0.1 Faster R-CNN整体流程图0.2 RPN层流程图开始之前的关键词1 RPN层出现的关键词1.1 分类与回归1.2 进入RPN层之前的两个1x1卷积1.3 Reshape layer1.4 Softmax1.5 Proposal layer1.6 RoI Pooling0.1 Faster R-CNN整体流程图0.2 RPN层流程图开始之前的关键词对于关键词,大可挑选自己不懂的地方看,并不需要全看所有的介绍。1 RPN层出现的关键词1.1 分类原创 2020-10-11 11:17:54 · 3745 阅读 · 1 评论