逻辑斯蒂回归法多元分类

返回目录

输出为包含多个值的离散序列。
y ∈ { s 1 , s 2 , . . . , s K } y\in \{ s_1, s_2, ..., s_K \} y{s1,s2,...,sK}
其中:K为输出样本不同值的个数。

1.转化为多个二元分类。

将预测值 y y y进行以下映射,可划分为 K K K组:
z k = { 1 ( y = s k ) 0 ( y ≠ s k ) z_k= \begin{cases} 1& (y = s_k) \\ 0& (y \ne s_k)\\ \end{cases} zk={10(y=sk)(y=sk)
其中: k = 1 , 2 , . . . , K k = 1, 2, ..., K k=1,2,...,K
转化为测试输入: x ⃗ \vec{x} x ,测试输出: z k {z}_k zk
利用二元分类可得到 θ ⃗ ( k ) \vec{\theta}^{(k)} θ (k)
代入 h ( x ⃗ ) h(\vec{x}) h(x ),有:
h ( k ) ( x t ⃗ ) = 1 1 + e − θ ⃗ ( k ) T x ⃗ t h_{(k)}(\vec{x_t})=\frac{1}{1+e^{- {\vec{\theta}^{(k)}}^T \vec{x}_t}} h(k)(xt )=1+eθ (k)Tx t1
其中: x t ⃗ \vec{x_t} xt 表示单个测试数据的输入向量。
这样可以得到 K K K个假设,选择 h ( k ) ( x t ⃗ ) h_{(k)}(\vec{x_t}) h(k)(xt )最大的假设,则输入测试向量 x t ⃗ \vec{x_t} xt 的预测输出为 s k s_k sk

2.多元假设函数

假设函数:
h ( x ⃗ ) = 1 1 + ∑ k = 1 k = K − 1 e − θ ⃗ ( k ) T x ⃗ h(\vec{x}) =\frac{1}{ 1+\sum_{k=1}^{k=K-1} e^{ -{\vec{\theta}^{(k)}}^T\vec{x}}} h(x )=1+k=1k=K1eθ (k)Tx 1
其中:
x ⃗ = [ x 0 , x 1 , . . . , x n ] T ∈ R ( n + 1 ) × 1 θ ⃗ ( k ) = [ θ 0 ( k ) , θ 1 ( k ) , . . . , θ n ( k ) ] T ∈ R ( n + 1 ) × 1 ( n 为 特 征 个 数 ) \begin{aligned} \vec{x}=[x_0, x_1, ...,x_n]^T\in\mathbb R^{(n+1)\times1} \\ \vec{\theta}^{(k)}=[\theta_0^{(k)}, \theta_1^{(k)}, ...,\theta_n^{(k)}]^T\in\mathbb R^{(n+1)\times1} \\ (n为特征个数) \end{aligned} x =[x0,x1,...,xn]TR(n+1)×1θ (k)=[θ0(k),θ1(k),...,θn(k)]TR(n+1)×1n
当测试输入 x ⃗ \vec x x 时,得到正确预测值的概率为:
p = { h ( x ⃗ ) P ( y = s 1 ) ( 1 − h ( x ⃗ ) ) P ( y ≠ s 1 ) } ⋅ { h ( x ⃗ ) P ( y = s 2 ) ( 1 − h ( x ⃗ ) ) P ( y ≠ s 2 ) } ⋅ . . . { h ( x ⃗ ) P ( y = s K ) ( 1 − h ( x ⃗ ) ) P ( y ≠ s K ) } p=\{h(\vec x)^{P(y=s_1)}(1-h(\vec x))^{P(y\ne s_1)}\}\cdot \{h(\vec x)^{P(y=s_2)}(1-h(\vec x))^{P(y\ne s_2)}\}\cdot ...\{h(\vec x)^{P(y=s_K)}(1-h(\vec x))^{P(y\ne s_K)}\} p={h(x )P(y=s1)(1h(x ))P(y=s1)}{h(x )P(y=s2)(1h(x ))P(y=s2)}...{h(x )P(y=sK)(1h(x ))P(y=sK)}
所以有:
p = ∏ k = 1 k = K ( h ( x ⃗ ) P ( y = s k ) ( 1 − h ( x ⃗ ) ) P ( y ≠ s k ) ) p=\prod_{k=1}^{k=K}(h(\vec x)^{P(y=s_k)}(1-h(\vec x))^{P(y\ne s_k)}) p=k=1k=K(h(x )P(y=sk)(1h(x ))P(y=sk))
故似然函数:
l ( θ ⃗ ) = ∏ i = 1 i = m ∏ k = 1 k = K ( h ( x ⃗ ( i ) ) P ( y ( i ) = s k ) ( 1 − h ( x ⃗ ( i ) ) ) P ( y ( i ) ≠ s k ) ) l(\vec{\theta})=\prod_{i=1}^{i=m}\prod_{k=1}^{k=K}(h(\vec x^{(i)})^{P(y^{(i)}=s_k)}(1-h(\vec x^{(i)}))^{P(y^{(i)}\ne s_k)}) l(θ )=i=1i=mk=1k=K(h(x (i))P(y(i)=sk)(1h(x (i)))P(y(i)=sk))
两边取对数有:
L ( θ ⃗ ) = l n ( l ( θ ⃗ ) ) = ∑ i = 1 i = m ∑ k = 1 k = K ( P ( y ( i ) = s k ) l n ( h ( x ⃗ ( i ) ) ) + ( 1 − P ( y ( i ) = s k ) ) ( 1 − l n ( h ( x ⃗ ( i ) ) ) ) L(\vec{\theta}) =ln(l(\vec{\theta}))=\sum_{i=1}^{i=m}\sum_{k=1}^{k=K}(P(y^{(i)}=s_k)ln(h(\vec x^{(i)}))+(1-P(y^{(i)}=s_k))(1-ln(h(\vec x^{(i)}))) L(θ )=ln(l(θ ))=i=1i=mk=1k=K(P(y(i)=sk)ln(h(x (i)))+(1P(y(i)=sk))(1ln(h(x (i))))
故代价函数:
J ( θ ⃗ ) = − ∑ i = 1 i = m ∑ k = 1 k = K ( P y ( i ) = s k l n ( h ( x ⃗ ( i ) ) ) + ( 1 − P y ( i ) = s k ) l n ( 1 − h ( x ⃗ ( i ) ) ) ) J( \vec{\theta}) = -\sum_{i=1}^{i=m}\sum_{k=1}^{k=K}(P_{y^{(i)}=s_k}ln(h(\vec x^{(i)}))+(1-P_{y^{(i)}=s_k})ln(1-h(\vec x^{(i)}))) J(θ )=i=1i=mk=1k=K(Py(i)=skln(h(x (i)))+(1Py(i)=sk)ln(1h(x (i))))
其中:
y ⃗ = [ y ( 1 ) , y ( 2 ) , . . . , y ( m ) ] T y ( i ) ∈ { s 1 , s 2 , . . . , s K } ( m 为 测 试 样 本 个 数 ) \begin{aligned} &\vec{y}=[y^{(1)}, y^{(2)}, ...,y^{(m)}]^T\\ &y^{(i)}\in \{ s_1, s_2, ..., s_K \} \\ &(m为测试样本个数) \end{aligned} y =[y(1),y(2),...,y(m)]Ty(i){s1,s2,...,sK}m
梯度下降更新:
θ j ( t ) : = θ j ( t ) − α ∂ J ( θ ⃗ ) ∂ θ j ( t ) \theta_j^{(t)}:=\theta_j^{(t)}-\alpha \frac{\partial J( \vec{\theta})}{\partial \theta_j^{(t)}} θj(t):=θj(t)αθj(t)J(θ )
其中: t = 1 , 2 , . . . , K − 1 t=1,2,...,K-1 t=1,2,...,K1
∂ J ( θ ⃗ ) ∂ θ j ( t ) = − ∑ i = 1 i = m ∑ k = 1 k = K ( P y ( i ) = s k l n ( h ( x ⃗ ( i ) ) ) + ( 1 − P y ( i ) = s k ) l n ( 1 − h ( x ⃗ ( i ) ) ) ) = ∑ i = 1 i = m ∑ k = 1 k = K ( h ( x ⃗ ( i ) ) − P y ( i ) = s k ) x j ( e − θ ⃗ ( t ) T x ⃗ ∑ u = 1 u = K − 1 e − θ ⃗ ( u ) T x ⃗ ) \begin{aligned} \frac{\partial J( \vec{\theta})}{\partial \theta_j^{(t)}} &= -\sum_{i=1}^{i=m}\sum_{k=1}^{k=K}(P_{y^{(i)}=s_k}ln(h(\vec x^{(i)}))+(1-P_{y^{(i)}=s_k})ln(1-h(\vec x^{(i)})))\\ &=\sum_{i=1}^{i=m}\sum_{k=1}^{k=K}(h(\vec x^{(i)})-P_{y^{(i)}=s_k})x_j(\frac{e^{ -{\vec{\theta}^{(t)}}^T\vec{x}}}{\sum_{u=1}^{u=K-1} e^{ -{\vec{\theta}^{(u)}}^T\vec{x}}}) \end{aligned} θj(t)J(θ )=i=1i=mk=1k=K(Py(i)=skln(h(x (i)))+(1Py(i)=sk)ln(1h(x (i))))=i=1i=mk=1k=K(h(x (i))Py(i)=sk)xj(u=1u=K1eθ (u)Tx eθ (t)Tx )

返回目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值