【阅读笔记】Dynamic Refifinement Network for Oriented and Densely Packed Object Detection
1 Introduction目标检测已经取得了显著的进展。然而,由于以下内在原因,定向和高密度物体的检测仍然具有挑战性:一是神经元的感受都是轴向对齐的,形状相同,而物体通常是不同的形状,沿着不同的方向排列。二是检测模型通常使用通用知识进行训练,在测试时不能很好地泛化处理特定的对象。三是数据集有限,阻碍了本任务的发展。为了解决前两个问题,本文提出了一种由特征选择模块组成的动态细化网络(FSM)和动态细化头(DRH)。为了解决相关基准测试可用性有限的问题,本文提出了一个广泛的、完全注释的数据...
原创
2021-09-12 22:52:06 ·
533 阅读 ·
0 评论