DeepSeek实用技巧系列-生活服务(七)

利用DeepSeek进行生活服务系列第七部分命理玄学-2。

奇门遁甲法:

第一问:你是一个命理学大师,深谙八字及奇门等传统命理方法。我出生于公历*年*月*日时分,男/女性。请用奇门遁甲及八字分析我的一生,先帮我回顾我过去十年的三个重大事件,再着重分析整体运势,学业、事业、财运、婚姻等。

 

第二问:请你用奇门遁甲的方式,分析我这个大运十年的爱情,婚姻,事业,财运,交友,父母,子女。以及我这个大运有什么机会点?

第三问:请你用奇门遁甲的方式,帮我分析今年xx月的xx事情,和xx,在xx地方,能不能成功?如果我想要成功,我应该通过什么样的方式去干预?

 

### 关于 DeepSeek-VL2-Small 的详细介绍 DeepSeek-VL2-Small 是属于 DeepSeek V3 系列一个变体模型,该系列主要专注于文本生成和理解的任务,例如对话、问答、写作以及翻译等[^1]。此特定版本的模型经过优化,在保持较高性能的同时降低了计算资源的需求。 #### 模型架构特点 为了提升效率并适应不同层次的信息处理需求,DeepSeek-VL2-Small 使用了动态窗口大小的设计理念。这种设计通过为每一层分配不同的窗口尺寸来实现更高效的特征提取——较低层采用较短窗口以便捕捉局部细节,而高层则利用较长窗口以获取全局上下文信息[^3]。 #### 参数调节指南 当实际应用 DeepSeek-VL2-Small 进行推理时,可以通过调整 `temperature` 和 `top_p` 来控制输出多样性。较大的数值会让模型的回答更加稳定且相似;相反地,较小的数值会增加不确定性与创造性,使得每次响应之间存在更多变化[^4]。 #### 部署建议 对于希望深入了解或者快速上手使用此类大型语言模型 (LLM),可以参考 WangRongsheng 提供的一份全面资料集合,其中包含了从理论到实践所需的各种资源链接[^5]。此外,如果计划自行训练或微调 Florence-2 类似项目,则可查阅相关仓库文档获得更为详尽的技术说明[^2]。 ```python import deepseek as ds model = ds.AutoModelForCausalLM.from_pretrained('deepseek-vl2-small') tokenizer = ds.AutoTokenizer.from_pretrained('deepseek-vl2-small') input_text = "Tell me a story about space exploration." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, temperature=0.7, top_p=0.9) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 以上代码片段展示了如何加载预训练好的 DeepSeek-VL2-Small 并生成一段关于太空探索的故事样例程序。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值