n!后面有多少个0

一开始想的简单,直接写代码:

#include<iostream>
#include<string.h>
using namespace std;
int f(int n) {
	if(n==0 || n==1)	return 1;
	return n*f(n-1);
}
int main() {
	int n,b,a=0;
	cin>>n;
	b=f(n);
	while(b!=0) {
		if(b%10==0)	{
			a++;
			b=b/10;
		}	
		else
			b=b/10;
	}
	cout<<a;
	return 0;
}

发现编译没有结果,重新改进了一下

#include<iostream>
using namespace std;
int f(int n) {
	int result=1;
	int num=0;
	for(int i=n;i>=1;i--)
		result*=i;
	
	while(1) {
		if(result%10==0) {
			result/=10;
			num++;
		}
		else
			break;
	}
	return num;
}

int main() {
	int n;
	cin>>n;
	cout<<f(n)<<endl;
	return 0;
}

考虑到如果n的值很大,导致数值溢出的情况,需要重新考虑。

其实,从"哪些数相乘可以得到10"这个角度,问题就变得比较的简单了。
首先考虑,如果N的阶乘为K和10的M次方的乘积,那么N!末尾就有M的0。如果将N的阶乘分解后,那么N的阶乘可以分解为: 2的X次方,3的Y次方,5的Z次方,.....的成绩。由于10 = 2 * 5,所以M只能和X和Z有关,每一对2和5相乘就可以得到一个10,于是M = MIN(X,Z),不难看出X大于Z,因为被2整除的频率比被5整除的频率高的多。所以可以把公式简化为M=Z.
由上面的分析可以看出,只要计算处Z的值,就可以得到N!末尾0的个数

方法一
    要计算Z,最直接的方法就是求出N的阶乘的所有因式(1,2,3,...,N)分解中5的指数。然后求和

#include<iostream>
using namespace std;
int f(int n) {
	int num=0,i,j;
	for(i=5;i<=n;i+=5)
	{
		j=i;
		while(j%5==0) {
			num++;
			j/=5;
		}
	}
	return num;
}

int main() {
	int n;
	cin>>n;
	cout<<f(n)<<endl;
	return 0;
}


方法二:Z = N/5 + N /(5*5) + N/(5*5*5).....知道N/(5的K次方)等于0
公式中 N/5表示不大于N的数中能被5整除的数贡献一个5,N/(5*5)表示不大于N的数中能被25整除的数再共享一个5.......

#include<iostream>
using namespace std;

int f(int n)
{
    int num = 0;
    while(n)
    {
        num += n / 5;
        n = n / 5;
    }
    return num;
}

int main() {
	int n;
	cin>>n;
	cout<<f(n)<<endl;
	return 0;
}


参考: N的阶乘末尾有多少个0

计算N!末尾多少个0



题目中的$b_n$的定义是$n$的阶乘,即$b_n=1*2*3*\cdots*n$。已知$b_3!=6$,$b_5!=120$,而$n!$的末尾会有很多个0,现在我们统计$n!$去除末尾的0之后最后有多少个0。注意到10是由$2*5$得到的,因此我们只需要统计$n!$中2和5的个数,然后取两者的最小值,即为$n!$末尾0的个数。显然2的个数远大于5的个数,因此我们只需要计算$n!$中5的因子个数。依次分别除以5,25,125……,并对每次得到的商进行累加即可。具体来讲,设$f(n)$表示$n!$中5的因子数,则有: $$f(n)=\left\lfloor \frac{n}{5}\right\rfloor +\left\lfloor\frac{n}{25}\right\rfloor+\left\lfloor\frac{n}{125}\right\rfloor+\cdots$$ 现在我们来看一下最后一个问题,即求$n!$除以末尾的0之后最后有多少个非0数字。很明显,这就是要求$n!$除以10之后最后一位非0数的个数,而这个数可以看成是$n!$中质因数2和5的个数之间的最小值。根据之前的计算,$n!$中5的因子数即为$n!$末尾0的个数,那么质因数2的个数又可以通过类似的方法来计算,即 $$g(n)=\left\lfloor \frac{n}{2}\right\rfloor +\left\lfloor\frac{n}{4}\right\rfloor+\left\lfloor\frac{n}{8}\right\rfloor+\cdots$$ 综上所述,我们只需要求出$f(n)$和$g(n)$,然后取两者的最小值即可。同时,注意到$f(n)$和$g(n)$都可以用对数的形式表示,具体来讲,有: $$f(n)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{5^i}\right\rfloor,\quad g(n)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{2^i}\right\rfloor$$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值