题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
package xidian.lili.niuke;
public class GreatestSumOfSubArray {
public static int FindGreatestSumOfSubArray(int[] array) {
int max=Integer.MIN_VALUE;
int cur=0;
for(int i=0;i<array.length;i++){
if(cur<=0){
cur=array[i];//如果当前子数组的和为负数,不论array[i]是正数还是负数,和都比array[i]小
}else{
cur=cur+array[i];
}
if(max<cur){
max=cur;
}
}
return max;
}
public static void main(String[] args) {
int array[]={1,-3,-2,7,-1,1,2,2,100};
System.out.println(FindGreatestSumOfSubArray(array));
}
}
F(i):以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变
F(i)=max(F(i-1)+array[i] , array[i])//当F(i-1)小于零,F(i)=array[i]
res:所有子数组的和的最大值//F(i)遇到负数,下标就会调到i
res=max(res,F(i))
public class Solution {
public static int FindGreatestSumOfSubArray(int[] array) {
int max=array[0];
int res=array[0];
for(int i=1;i<array.length;i++){
max=Math.max(max+array[i], array[i]);
res=Math.max(max, res);
}
return res;
}
}