连续子数组的最大和

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

package xidian.lili.niuke;

public class GreatestSumOfSubArray {
    public static int FindGreatestSumOfSubArray(int[] array) {
    	int max=Integer.MIN_VALUE;
    	int cur=0;
    	for(int i=0;i<array.length;i++){
    		if(cur<=0){
    			cur=array[i];//如果当前子数组的和为负数,不论array[i]是正数还是负数,和都比array[i]小
    		}else{
    			cur=cur+array[i];
    		}
    		if(max<cur){
    			max=cur;
    		}
    	}
        return max;
    }
	public static void main(String[] args) {
		int array[]={1,-3,-2,7,-1,1,2,2,100};
		System.out.println(FindGreatestSumOfSubArray(array));

	}

}

F(i):以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变

F(i)=max(F(i-1)+array[i] , array[i])//当F(i-1)小于零,F(i)=array[i]

res:所有子数组的和的最大值//F(i)遇到负数,下标就会调到i

res=max(res,F(i))

 

public class Solution {
     public static int FindGreatestSumOfSubArray(int[] array) {
          int max=array[0];
    	  int res=array[0];
    	  for(int i=1;i<array.length;i++){
    	      max=Math.max(max+array[i], array[i]);
    		  res=Math.max(max, res);
    	    }
    	  return res;
     }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值