文章转载:http://blog.csdn.net/v_july_v/article/details/6347454
程序员编程艺术:第二章、字符串是否包含问题
作者:July,yansha,caopengcs。
时间:二零一一年四月二十三日。
致谢:老梦,nossiac,Hession,Oliver,luuillu,啊菜,雨翔,及微软100题实现小组所有成员。
题目描述:
假设这有一个各种字母组成的字符串A,和另外一个字符串B,字符串里B的字母数相对少一些。什么方法能最快的查出所有小字符串B里的字母在大字符串A里都有?
比如,如果是下面两个字符串:
String 1: ABCDEFGHLMNOPQRS
String 2: DCGSRQPO
答案是true,所有在string2里的字母string1也都有。
如果是下面两个字符串:
String 1: ABCDEFGHLMNOPQRS
String 2: DCGSRQPZ
答案是false,因为第二个字符串里的Z字母不在第一个字符串里。
点评:
1、题目描述虽长,但题意简单明了,就是给定一长一短的俩个字符串A,B,假设A长B短,现在,要你判断B是否包含在字符串A中,即B?(-A。
2、题意虽简单,但实现起来并不轻松,且当如果面试官步步紧逼,一个一个否决你能想到的方法,要你给出更好、最好的方案时,你恐怕就要伤不少脑筋了。
ok,在继续往下阅读之前,您最好先想个几分钟,看你能想到的最好方案是什么,是否与本文最后实现的方法一致。
1.1、O(n*m)的轮询方法
判断string2中的字符是否在string1中?:
String 1: ABCDEFGHLMNOPQRS
String 2: DCGSRQPO
判断一个字符串是否在另一个字符串中,最直观也是最简单的思路是,针对第二个字符串string2中每一个字符,一一与第一个字符串string1中每个字符依次轮询比较,看它是否在第一个字符串string1中。
代码可如下编写:
- //copyright@啊菜 2011
- //updated@July&Image丶时光 2013
- #include <iostream>
- #include <string>
- using namespace std;
- int CompareString(string LongString,string ShortString)
- {
- int i,j;
- for (i=0; i<ShortString.length(); i++)
- {
- for (j=0; j<LongString.length(); j++) //O(n*m)
- {
- if (LongString[j] == ShortString[i]) //一一比较
- {
- break;
- }
- }
- if (j==LongString.length())
- {
- cout << "false" << endl;
- return 0;
- }
- }
- cout << "true" << endl;
- return 1;
- }
- int main()
- {
- string LongString="ABCDEFGHLMNOPQRS";
- string ShortString="DCGSRQPO";
- CompareString(LongString,ShortString);
- return 0;
- }
假设n是字符串string1的长度,m是字符串string2的长度,那么此算法,需要O(n*m)次操作,拿上面的例子来说,最坏的情况下将会有16*8 = 128次操作。显然,时间开销太大,我们需要找到一种更好的办法。
1.2、O(mlogm)+O(nlogn)+O(m+n)的排序方法
一个稍微好一点的方案是先对这两个字符串的字母进行排序,然后同时对两个字串依次轮询。两个字串的排序需要(常规情况)O(m log m) + O(n log n)次操作,之后的线性扫描需要O(m+n)次操作。
同样拿上面的字串做例子,将会需要16*4 + 8*3 = 88,再加上对两个字串线性扫描的16 + 8 = 24的操作。(随着字串长度的增长,你会发现这个算法的效果会越来越好)
关于采用何种排序方法,我们采用最常用的快速排序,下面的快速排序的代码用的是以前写的,比较好懂,并且,我执意不用库函数的qsort代码。唯一的问题是,此前写的代码是针对整数进行排序的,不过,难不倒我们,稍微改一下参数,即可,如下:
- //copyright@ 2011 July && yansha
- //July,updated,2011.04.23.
- #include <iostream>
- #include <string>
- using namespace std;
- //以前的注释,还让它保留着
- int partition(string &str,int lo,int hi)
- {
- int key = str[hi]; //以最后一个元素,data[hi]为主元
- int i = lo - 1;
- for(int j = lo; j < hi; j++) ///注,j从p指向的是r-1,不是r。
- {
- if(str[j] <= key)
- {
- i++;
- swap(str[i], str[j]);
- }
- }
- swap(str[i+1], str[hi]); //不能改为swap(&data[i+1],&key)
- return i + 1;
- }
- //递归调用上述partition过程,完成排序。
- void quicksort(string &str, int lo, int hi)
- {
- if (lo < hi)
- {
- int k = partition(str, lo, hi);
- quicksort(str, lo, k - 1);
- quicksort(str, k + 1, hi);
- }
- }
- //比较,上述排序O(m log m) + O(n log n),加上下面的O(m+n),
- //时间复杂度总计为:O(mlogm)+O(nlogn)+O(m+n)。
- void compare(string str1,string str2)
- {
- int posOne = 0;
- int posTwo = 0;
- while (posTwo < str2.length() && posOne < str1.length())
- {
- while (str1[posOne] < str2[posTwo] && posOne < str1.length() - 1)
- posOne++;
- //如果和str2相等,那就不能动。只有比str2小,才能动。
- if (str1[posOne] != str2[posTwo])
- break;
- //posOne++;
- //归并的时候,str1[str1Pos] == str[str2Pos]的时候,只能str2Pos++,str1Pos不可以自增。
- //多谢helloword指正。
- posTwo++;
- }
- if (posTwo == str2.length())
- cout << "true" << endl;
- else
- cout << "false" << endl;
- }
- int main()
- {
- string str1 = "ABCDEFGHLMNOPQRS";
- string str2 = "DCGDSRQPOM";
- //之前上面加了那句posOne++之所以有bug,是因为,@helloword:
- //因为str1如果也只有一个D,一旦posOne++,就到了下一个不是'D'的字符上去了,
- //而str2有俩D,posTwo++后,下一个字符还是'D',就不等了,出现误判。
- quicksort(str1, 0, str1.length() - 1);
- quicksort(str2, 0, str2.length() - 1); //先排序
- compare(str1, str2); //后线性扫描
- return 0;
- }
1.3、O(n+m)的计数排序方法
此方案与上述思路相比,就是在排序的时候采用线性时间的计数排序方法,排序O(n+m),线性扫描O(n+m),总计时间复杂度为:O(n+m)+O(n+m)=O(n+m)。
代码如下:
- #include <iostream>
- #include <string>
- using namespace std;
- // 计数排序,O(n+m)
- void CounterSort(string str, string &help_str)
- {
- // 辅助计数数组
- int help[26] = {0};
- // help[index]存放了等于index + 'A'的元素个数
- for (int i = 0; i < str.length(); i++)
- {
- int index = str[i] - 'A';
- help[index]++;
- }
- // 求出每个元素对应的最终位置
- for (int j = 1; j < 26; j++)
- help[j] += help[j-1];
- // 把每个元素放到其对应的最终位置
- for (int k = str.length() - 1; k >= 0; k--)
- {
- int index = str[k] - 'A';
- int pos = help[index] - 1;
- help_str[pos] = str[k];
- help[index]--;
- }
- }
- //线性扫描O(n+m)
- void Compare(string long_str,string short_str)
- {
- int pos_long = 0;
- int pos_short = 0;
- while (pos_short < short_str.length() && pos_long < long_str.length())
- {
- // 如果pos_long递增直到long_str[pos_long] >= short_str[pos_short]
- while (long_str[pos_long] < short_str[pos_short] && pos_long < long_str.length
- () - 1)
- pos_long++;
- // 如果short_str有连续重复的字符,pos_short递增
- while (short_str[pos_short] == short_str[pos_short+1])
- pos_short++;
- if (long_str[pos_long] != short_str[pos_short])
- break;
- pos_long++;
- pos_short++;
- }
- if (pos_short == short_str.length())
- cout << "true" << endl;
- else
- cout << "false" << endl;
- }
- int main()
- {
- string strOne = "ABCDAK";
- string strTwo = "A";
- string long_str = strOne;
- string short_str = strTwo;
- // 对字符串进行计数排序
- CounterSort(strOne, long_str);
- CounterSort(strTwo, short_str);
- // 比较排序好的字符串
- Compare(long_str, short_str);
- return 0;
- }
不过上述方法,空间复杂度为O(n+m),即消耗了一定的空间。有没有在线性时间,且空间复杂度较小的方案列?
第二节、寻求线性时间的解法
2.1、O(n+m)的hashtable的方法
上述方案中,较好的方法是先对字符串进行排序,然后再线性扫描,总的时间复杂度已经优化到了:O(m+n),貌似到了极限,还有没有更好的办法列?
我们可以对短字串进行轮询(此思路的叙述可能与网上的一些叙述有出入,因为我们最好是应该把短的先存储,那样,会降低题目的时间复杂度),把其中的每个字母都放入一个Hashtable里(我们始终设m为短字符串的长度,那么此项操作成本是O(m)或8次操作)。然后轮询长字符串,在Hashtable里查询短字符串的每个字符,看能否找到。如果找不到,说明没有匹配成功,轮询长字符串将消耗掉16次操作,这样两项操作加起来一共只有8+16=24次。
当然,理想情况是如果长字串的前缀就为短字串,只需消耗8次操作,这样总共只需8+8=16次。
或如梦想天窗所说: 我之前用散列表做过一次,算法如下:
1、hash[26],先全部清零,然后扫描短的字符串,若有相应的置1,
2、计算hash[26]中1的个数,记为m
3、扫描长字符串的每个字符a;若原来hash[a] == 1 ,则修改hash[a] = 0,并将m减1;若hash[a] == 0,则不做处理
4、若m == 0 or 扫描结束,退出循环。
代码实现,也不难,如下:
- //copyright@ 2011 yansha
- //July、updated,2011.04.25。
- #include <iostream>
- #include <string>
- using namespace std;
- int main()
- {
- string str1="ABCDEFGHLMNOPQRS";
- string str2="DCGSRQPOM";
- // 开辟一个辅助数组并清零
- int hash[26] = {0};
- // num为辅助数组中元素个数
- int num = 0;
- // 扫描短字符串
- for (int j = 0; j < str2.length(); j++)
- {
- // 将字符转换成对应辅助数组中的索引
- int index = str1[j] - 'A';
- // 如果辅助数组中该索引对应元素为0,则置1,且num++;
- if (hash[index] == 0)
- {
- hash[index] = 1;
- num++;
- }
- }
- // 扫描长字符串
- for (int k = 0; k < str1.length(); k++)
- {
- int index = str1[k] - 'A';
- // 如果辅助数组中该索引对应元素为1,则num--;为零的话,不作处理(不写语句)。
- if(hash[index] ==1)
- {
- hash[index] = 0;
- num--;
- if(num == 0) //m==0,即退出循环。
- break;
- }
- }
- // num为0说明长字符串包含短字符串内所有字符
- if (num == 0)
- cout << "true" << endl;
- else
- cout << "false" << endl;
- return 0;
- }
2.2、O(n+m)的数组存储方法
有两个字符串short_str和long_str。
第一步:你标记short_str中有哪些字符,在store数组中标记为true。(store数组起一个映射的作用,如果有A,则将第1个单元标记true,如果有B,则将第2个单元标记true,... 如果有Z, 则将第26个单元标记true)
第二步:遍历long_str,如果long_str中的字符包括short_str中的字符则将store数组中对应位置标记为false。(如果有A,则将第1个单元标记false,如果有B,则将第2个单元标记false,... 如果有Z, 则将第26个单元标记false),如果没有,则不作处理。
第三步:此后,遍历store数组,如果所有的元素都是false,也就说明store_str中字符都包含在long_str内,输出true。否则,输出false。
举个简单的例子好了,如abcd,abcdefg两个字符串,
1、先遍历短字符串abcd,在store数组中相对应的abcd的位置上的单元元素置为true,
2、然后遍历abcdefg,在store数组中相应的abcd位置上,发现已经有了abcd,则前4个的单元元素都置为false,当我们已经遍历了4个元素,等于了短字符串abcd的4个数目,所以,满足条件,退出。
(不然,继续遍历的话,我们会发现efg在store数组中没有元素,不作处理。最后,自然,就会发现store数组中的元素单元都是false的。)
3、遍历store数组,发现所有的元素都已被置为false,所以程序输出true。
其实,这个思路和上一节中,O(n+m)的hashtable的方法代码,原理是完全一致的,且本质上都采用的数组存储(hash表也是一个数组),但我并不认为此思路多此一举,所以仍然贴出来。ok,代码如下:
- //copyright@ 2011 Hession
- //July、updated,2011.04.23.
- #include<iostream>
- #include<string.h>
- using namespace std;
- int main()
- {
- char long_ch[]="ABCDEFGHLMNOPQRS";
- char short_ch[]="DEFGHXLMNOPQ";
- int i;
- bool store[58];
- memset(store,false,58);
- //前两个 是 遍历 两个字符串, 后面一个是 遍历 数组
- for(i=0;i<sizeof(short_ch)-1;i++)
- store[short_ch[i]-65]=true;
- for(i=0;i<sizeof(long_ch)-1;i++)
- {
- if(store[long_ch[i]-65]!=false)
- store[long_ch[i]-65]=false;
- }
- for(i=0;i<58;i++)
- {
- if(store[i]!=false)
- {
- cout<<"short_ch is not in long_ch"<<endl;
- break;
- }
- if(i==57)
- cout<<"short_ch is in long_ch"<<endl;
- }
- return 0;
- }
第三节、O(n)到O(n+m)的素数方法
我想问的是,还有更好的方案么?
你可能会这么想:O(n+m)是你能得到的最好的结果了,至少要对每个字母至少访问一次才能完成这项操作,而上一节最后的俩个方案是刚好是对每个字母只访问一次。
ok,下面给出一个更好的方案:
假设我们有一个一定个数的字母组成字串,我给每个字母分配一个素数,从2开始,往后类推。这样A将会是2,B将会是3,C将会是5,等等。现在我遍历第一个字串,把每个字母代表的素数相乘。你最终会得到一个很大的整数,对吧?
然后——轮询第二个字符串,用每个字母除它。如果除的结果有余数,这说明有不匹配的字母。如果整个过程中没有余数,你应该知道它是第一个字串恰好的子集了。
思路总结如下:
1.定义最小的26个素数分别与字符'A'到'Z'对应。
2.遍历长字符串,求得每个字符对应素数的乘积。
3.遍历短字符串,判断乘积能否被短字符串中的字符对应的素数整除。
4.输出结果。
至此,如上所述,上述算法的时间复杂度为O(m+n),时间复杂度最好的情况为O(n)(遍历短的字符串的第一个数,与长字符串素数的乘积相除,即出现余数,便可退出程序,返回false),n为长字串的长度,空间复杂度为O(1)。如你所见,我们已经优化到了最好的程度。
不过,正如原文中所述:“现在我想告诉你 —— Guy的方案在算法上并不能说就比我的好。而且在实际操作中,你很可能仍会使用我的方案,因为它更通用,无需跟麻烦的大型数字打交道。但从”巧妙水平“上讲,Guy提供的是一种更、更、更有趣的方案。”
ok,如果你有更好的思路,欢迎在本文的评论中给出,非常感谢。
- #include <iostream>
- #include <string>
- #include "BigInt.h"
- using namespace std;
- // 素数数组
- int primeNumber[26] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
- 61, 67, 71, 73, 79, 83, 89, 97, 101};
- int main()
- {
- string strOne = "ABCDEFGHLMNOPQRS";
- string strTwo = "DCGSRQPOM";
- // 这里需要用到大整数
- CBigInt product = 1; //大整数除法的代码,下头给出。
- // 遍历长字符串,得到每个字符对应素数的乘积
- for (int i = 0; i < strOne.length(); i++)
- {
- int index = strOne[i] - 'A';
- product = product * primeNumber[index];
- }
- // 遍历短字符串
- for (int j = 0; j < strTwo.length(); j++)
- {
- int index = strTwo[j] - 'A';
- // 如果余数不为0,说明不包括短字串中的字符,跳出循环
- if (product % primeNumber[index] != 0)
- break;
- }
- // 如果积能整除短字符串中所有字符则输出"true",否则输出"false"。
- if (strTwo.length() == j)
- cout << "true" << endl;
- else
- cout << "false" << endl;
- return 0;
- }
上述程序待改进的地方:
1.只考虑大写字符,如果考虑小写字符和数组的话,素数数组需要更多素数
2.没有考虑重复的字符,可以加入判断重复字符的辅助数组。
大整数除法的代码,后续公布下载地址。
说明:此次的判断字符串是否包含问题,来自一位外国网友提供的gofish、google面试题,这个题目出自此篇文章:http://www.aqee.net/2011/04/11/google-interviewing-story/,文章记录了整个面试的过程,比较有趣,值得一读。
扩展:正如网友安逸所说:其实这个问题还可以转换为:a和b两个字符串,求b串包含a串的最小长度。包含指的就是b的字串包含a中每个字符。
updated:我们假设字母都由大写字母组成……,我们先对小字符串预处理,可以得到B里包含哪些字符,这里可以用位运算,或者用bool数组。位运算简单些,用一个int中的26bit表示其是否在B中出现即可。
- //copyright@ caopengcs 2013
- bool AcontainsB(char *A,char *B) {
- int have = 0;
- while (*B) {
- have |= 1 << (*(B++) - 'A'); // 把A..Z对应为0..26
- }
- while (*A) {
- if ((have & (1 << (*(A++) - 'A'))) == 0) {
- return false;
- }
- }
- return true;
- }