Java集合类(二)——LinkedList、Queue、PriorityQueue

List集合源码分析

1.LinkedList

LinkedList实现List接口,底层结构是双向链表,允许所有的元素包括null

除了实现 List 接口外,LinkedList 类还为在列表的开头及结尾 get、remove 和 insert 元素提供了统一的命名方法。这些操作允许将链接列表用作堆栈、队列或双端队列。

实现 Deque 接口,为 add、poll 提供先进先出队列操作,以及其他堆栈和双端队列操作。

维护变量

transient int size = 0;      //元素个数
transient Node<E> first;     //头结点
transient Node<E> last;	     //尾结点

Node节点具有指向前一个节点和后一个节点的指针,因此LinkedList本质是双向链表

//内部类Node
private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

构造器

//啥也不干
public LinkedList() {
    }

插入

相比于ArrayList,LinkedList的插入操作很简单,都是些基本的链表操作

public boolean add(E e) {
        linkLast(e);    //在队尾插入
        return true;
    }
//链表插入,很简单
void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

其他插入方法:

  add(int index, E element):在此列表中指定的位置插入指定的元素。

  addAll(Collection<? extends E> c):添加指定 collection 中的所有元素到此列表的结尾,顺序是指定 collection 的迭代器返回这些元素的顺序。

  addAll(int index, Collection<? extends E> c):将指定 collection 中的所有元素从指定位置开始插入此列表。

  addFirst(E e): 将指定元素插入此列表的开头。

  addLast(E e): 将指定元素添加到此列表的结尾。

addFirst和addLast让LinkedList可以用作双端队列

删除

public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

这里要注意 remove(Object o) 删除的是首次出现的指定元素,判断是否相等采用的是equals()

// 链表删除,很简单
E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }

其他移除方法

clear(): 从此列表中移除所有元素。
remove():获取并移除此列表的头(第一个元素)。
remove(int index):移除此列表中指定位置处的元素。
remove(Objec o):从此列表中移除首次出现的指定元素(如果存在)。
removeFirst():移除并返回此列表的第一个元素。
removeFirstOccurrence(Object o):从此列表中移除第一次出现的指定元素(从头部到尾部遍历列表时)。
removeLast():移除并返回此列表的最后一个元素。
removeLastOccurrence(Object o):从此列表中移除最后一次出现的指定元素(从头部到尾部遍历列表时)。

查找

public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }
//离哪边近从哪边开始查找
Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

2.Queue

  1. LinkedList:实现了Deque接口,可用作链表实现的队列
  2. ArrayQueue:实现了Deque接口,底层为循环数组实现的双向队列
  3. PriorityQueue:优先队列,用数组实现的堆的结构

PriorityQueue

优先队列跟普通的队列不一样,普通队列是一种遵循FIFO规则的队列,拿数据的时候按照加入队列的顺序拿取。 而优先队列每次拿数据的时候都会拿出优先级最高的数据。

优先队列内部维护着一个堆,每次取数据的时候都从堆顶拿数据(堆顶的优先级最高)。

插入
public boolean add(E e) {
    return offer(e); // add方法内部调用offer方法
}
public boolean offer(E e) {
    if (e == null) // 元素为空的话,抛出NullPointerException异常
        throw new NullPointerException();
    modCount++;
    int i = size;
    if (i >= queue.length) // 如果当前用堆表示的数组已经满了,调用grow方法扩容
        grow(i + 1); // 扩容
    size = i + 1; // 元素个数+1
    if (i == 0) // 堆还没有元素的情况
        queue[0] = e; // 直接给堆顶赋值元素
    else // 堆中已有元素的情况
        siftUp(i, e); // 重新调整堆,从下往上调整,因为新增元素是加到最后一个叶子节点
    return true;
}

堆的插入函数

private void siftUp(int k, E x) {
    if (comparator != null)  // 比较器存在的情况下
        siftUpUsingComparator(k, x); // 使用比较器调整
    else // 比较器不存在的情况下
        siftUpComparable(k, x); // 使用元素自身的比较器调整
}
private void siftUpUsingComparator(int k, E x) {
    while (k > 0) { // 一直循环直到父节点还存在
        int parent = (k - 1) >>> 1; // 找到父节点索引,等同于(k - 1)/ 2
        Object e = queue[parent]; // 获得父节点元素
        // 新元素与父元素进行比较,如果满足比较器结果,直接跳出,否则进行调整
        if (comparator.compare(x, (E) e) >= 0) 
            break;
        queue[k] = e; // 进行调整,新位置的元素变成了父元素
        k = parent; // 新位置索引变成父元素索引,进行递归操作
    }
    queue[k] = x; // 新添加的元素添加到堆中
}
删除
public E poll() {
    if (size == 0)
        return null;
    int s = --size; // 元素个数-1
    modCount++;
    E result = (E) queue[0]; // 得到堆顶元素
    E x = (E) queue[s]; // 最后一个叶子节点
    queue[s] = null; // 最后1个叶子节点置空
    if (s != 0)
        siftDown(0, x); // 从上往下调整,因为删除元素是删除堆顶的元素
    return result;
}
private void siftDown(int k, E x) {
    if (comparator != null) // 比较器存在的情况下
        siftDownUsingComparator(k, x); // 使用比较器调整
    else // 比较器不存在的情况下
        siftDownComparable(k, x); // 使用元素自身的比较器调整
}

堆删除函数(堆排序)

private void siftDown(int k, E x) {
    if (comparator != null) // 比较器存在的情况下
        siftDownUsingComparator(k, x); // 使用比较器调整
    else // 比较器不存在的情况下
        siftDownComparable(k, x); // 使用元素自身的比较器调整
}
private void siftDownUsingComparator(int k, E x) {
    int half = size >>> 1; // 只需循环节点个数的一般即可
    while (k < half) {
        int child = (k << 1) + 1; // 得到父节点的左子节点索引,即(k * 2)+ 1
        Object c = queue[child]; // 得到左子元素
        int right = child + 1; // 得到父节点的右子节点索引
        if (right < size &&
            comparator.compare((E) c, (E) queue[right]) > 0) // 左子节点跟右子节点比较,取更大的值
            c = queue[child = right];
        if (comparator.compare(x, (E) c) <= 0)  // 然后这个更大的值跟最后一个叶子节点比较
            break;
        queue[k] = c; // 新位置使用更大的值
        k = child; // 新位置索引变成子元素索引,进行递归操作
    }
    queue[k] = x; // 最后一个叶子节点添加到合适的位置
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值