在实际工作,我们需要读取大数据文件,文件可能上G百G,所以我们不可能一次性的读取到内存,io.readAll不可用,那么我们可以考虑分块,IO流的方式如io.copy.
对比两者:
io.ReadAll:
io.ReadAll 是一个方便的函数,可以将整个文件内容一次性读取到内存中,并返回一个字节切片。这在处理小文件或者需要一次性加载数据的情况下非常适用。然而,对于大文件,使用 io.ReadAll 可能会导致以下问题:
- 内存消耗:读取大文件可能导致内存消耗急剧增加,甚至超出可用内存限制。
- 性能问题:应用程序的响应性可能下降,用户可能会感到应用程序不再响应。
- 延迟问题:大文件的读取需要更多时间,可能导致较长的延迟。
io.Copy:
io.Copy 函数通过逐块的方式从源读取数据并将其写入目标,适用于流式传输大文件。它具有以下优势:
- 低内存消耗:io.Copy 逐块处理数据,不需要将整个文件加载到内存中,从而降低内存消耗。
- 高性能:流式传输提高了读取和写入的效率,适用于需要高性能处理大文件的情况。
- 更好的响应性:io.Copy 不会一次性阻塞等待整个文件读取完成,从而提高应用程序的响应性
示例:
package test
import (
"fmt"
"io"
"os"
"runtime"
"testing"
)
func largeFileRead(_file string) {
f, err := os.Open(_file)
if err != nil {
fmt.Errorf("打开文件错误:%v", err)
return
}
defer f.Close()
// 读取数据大写
buffer := make([]byte, 4096)
for {
getMemory()
n, err := f.Read(buffer)
if err != nil && err != io.EOF {
fmt.Errorf("读取文件错误:%v", err)
return
}
if n == 0 {
break
}
fmt.Println("内容:", string(buffer))
}
fmt.Println("读取完成")
}
func getMemory() {
// 获取内存信息
var m runtime.MemStats
runtime.ReadMemStats(&m)
fmt.Printf("%d KB\n", m.Alloc/1024)
}
func Test_largeFileRead(t *testing.T) {
fileName := "D:xxxx.txt"
largeFileRead(fileName)
}
运行结果:
实时内存占用:854KB,文件大小102M