Flink Checkpointing flink中每个function和operator都可以状态化,具有可状态化的元素,可以再处理数据过程中进行数据存储,参与数据的容错。启用和配置检查点flink程序中,默认关闭Checkpointin。如果想启用Checkpointing,可通过StreamExecutionEnvironment.enableCheckpointing(n),n为毫秒,表示进行checkpoint间隔时间。(未完待续。。。)...
Broadcast State模式 在flink中,大多数state只作用于各自的算子,算子间不能共用state,BroadcastProcessFunction和KeyedBroadcastProcessFunction则作用于全局算子,进行数据共享,但只能在广播端进行数据的读写,非广播端只有读操作。...
配合状态(state)使用的键控流(KeyedDataStream) Keyed DataStream键控流(KeyedDataStream)概念:在flink中数据集为DataStream,对其进行分区时,会产生一个KeyedDataStream,然后允许使用键控流的operator以及特有的state(如mapstate、valuestate等)如果想使用key state,需要对DataStream指明一个key进行分区,也可以使用keyby创建一个KeyedDataStream,对这个KeyedDataStream可以使用keyed state。keyby
Java hashcode作用 总的来说,Java中的集合(Collection)有两类,一类是List,再有一类是Set。 前者集合内的元素是有序的,元素可以重复;后者元素无序,但元素不可重复。 那么这里就有一个比较严重的问题了:要想保证元素不重复,可两个元素是否重复应该依据什么来判断呢? 这就是Object.equals方法了。但是,如果每增加一个元素就检查一次,那么当元素很多时,后添加到集合中的元素比较的次数就非常多
java使用jdbc调用hive出现The query did not generate a result set! 使用java通过jdbc调用hive,执行hive sql时出现如下异常:Exception in thread "main" java.lang.reflect.InvocationTargetException at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMeth
简单统计Hbase某列个数笔记 思路:将hbase表中数据输出到本地文件中,通过linux命令查找指定字符串个数。 echo "scan 'TestTable'"|hbase shell |grep column > test.txt cat test.txt |grep "TestColumn" |wc -l
新旧 Hadoop MapReduce 框架比对 首先客户端不变,其调用 API 及接口大部分保持兼容,这也是为了对开发使用者透明化,使其不必对原有代码做大的改变 ( 详见 2.3 Demo 代码开发及详解),但是原框架中核心的 JobTracker 和 TaskTracker 不见了,取而代之的是 ResourceManager, ApplicationMaster 与 NodeManager 三个部分。我们来详细解释这三个部分,首
vmware centos上网配置 1. windows网络适配器中设置VMnet8的IPV4设置为自动获取2. 虚拟机设置为NAT,如下图 3. “编辑”-“虚拟网络编辑器”选中VMnet8,点选NAT(与虚拟机共享主机IP地址),把DHCP勾上(那两个框都勾上)。 4. 在windows 运行cmd命令,运行如下命令net start "VMware DHCP Service"start
Maven搭建hadoop环境之pom.xml基本配置 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.
Maven搭建hadoop环境报Missing artifact jdk.tools:jdk.tools:jar:1.8 使用Maven搭建hadoop环境,在pom.xml中报错:Missing artifact jdk.tools:jdk.tools:jar:1.8问题原因:没有配置jdk中tools.jar解决方法:在pom.xml中添加如下配置 org.apache.hadoop hadoop-mapreduce-client-core 2.7.1
hive udf、udaf、udtf使用区分 UDF:一进一出实现方法:1. 继承UDF类 2. 重写evaluate方法 3. 将该java文件编译成jar 4. 在终端输入如下命令:hive> add jar test.jar;hive> create temporary function function_name as 'com.hrj.hive.udf.UDFClass';hive> s
Hive中jline.jar与Hadoop中的jline.jar版本不同,启动hive出错 [root@wanghy conf]# hive15/05/30 10:36:52 WARN conf.HiveConf: HiveConf of name hive.metastore.local does not existLogging initialized using configuration in file:/root/work/hive/conf/hive-log4j.pro
java实现51cto网站的自动签到与获取下载积分等功能代码 需要3个jar包,网上自己下载即可:1. commons-logging-1.1.1.jar2. httpclient-4.2.5.jar3. httpcore-4.3.2.jar将字符串USER和PASSWD改成自己的用户名与密码,然后在eclipse运行即可package cn.com.wanghy;import java.io.BufferedReader;im
java实现快速排序算法 package cn.com.wanghy;/** * 快速排序:是对起泡排序的一种改进,它的基本思想是:通过一趟排序将待排序记录分割成独立的两部分, * 其汇总一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分继续进行排序,已达到 * 整个序列有序。快速排序是一种不稳定的排序算法,时间复杂度为O(n*lg(n))。 * * */public class Quic
从const char *中获取指定char *字符串 今天做项目需要在代码中修改视频url格式,贴出主要实现代码,以本地视频url为例: const char *url = "file:///home/wanghy/work/avFile/File_Seg-0.ts? FileName=a-1&HLS=true&SessionId=29061-366971083";
MapReduce之shuffle过程 Shuffle描述着数据从map task输出到reduce task输入的这段过程。官网图片表示Shuffle过程横跨map与reduce两端,如下图: 一 map端shuffle map端流程如下图: 1. map的输入来自HDFS的block(块)。 2.map的输出是
原MapReduce与YARN比对 一、原 MapReduce 程序的流程 1. 首先用户程序 (JobClient) 提交了一个 job,job 的信息会发送到 Job Tracker 中,Job Tracker 是 Map-reduce 框架的中心,他需要与集群中的机器定时通信 (heartbeat), 需要管理哪些程序应该跑在哪些机器上,需要管理所有 job 失败、重启等操作。 2. Tas
Hadoop之各进程与组件总结 1、hadoop通过一个jobtracker分派任务到一系列tasktracker来运行,tasktracker同时向jobtracker返回任务运行结果。jobtracker对作业的输入数据进行分片,然后为每个分片创建一个map任务,同时创建一定数量的reduce任务,并指派空闲的tasktracker来执行这些任务。tasktracker从jobtracker处获取任务jar包以及分片