微软大楼设计方案(简单)

近日,微软新大楼的设计方案正在广泛征集中,其中一种方案格外引人注目。在这个方案中,大楼由 nnn 栋楼组成,这些楼从左至右连成一排,编号依次为 111nnn,其中第 iii 栋楼有 hih_ihi 层。每栋楼的每一层为一个独立的 办公区域,可以步行 直达同层相邻楼栋的办公区域,以及 直达同楼栋相邻楼层的办公区域

由于方案设计巧妙,上一层楼、下一层楼、向左右移动到相邻楼栋同层的办公区域均刚好需要 111 分钟。在这些办公区域中,有一些被 核心部门 占用了(一个办公区域内最多只有一个核心部门),出于工作效率的考虑,微软希望核心部门之间的移动时间越短越好。对于一个给定的 最大移动时间 kkk,大楼的 协同值 定义为:有多少个 核心部门对 之间的移动时间不超过 kkk。由于大楼门禁的限制,不可以走出整个大楼,也不可以登上天台思考人生。你可以认为在办公区域内的移动时间忽略不计,并且在大楼内总是按照最优方案进行移动。

对于一个给定的新大楼设计方案,你能算出方案的协同值么?

输入格式

第一行包含两个正整数 n,k(1≤k≤200020)n,k(1\leq k\leq 200020)n,k(1k200020),分别表示大楼的栋数以及最大移动时间。

第二行包含 nnn 个正整数 h1,h2,...,hn(1≤hi≤20)h_1,h_2,...,h_n(1\leq h_i\leq 20)h1,h2,...,hn(1hi20),分别表示每栋楼的层数。

接下来一行包含一个正整数 mmm,表示 核心部门 个数。

接下来 mmm 行,每行两个正整数 xi,yi(1≤xi≤n,1≤yi≤hxi)x_i,y_i(1\leq x_i\leq n,1\leq y_i\leq h_{x_i})xi,yi(1xin,1yihxi),表示该核心部门位于第 xix_ixi 栋楼的第 yiy_iyi 层。

输入数据保证 mmm 个核心部门的位置不会重复。

对于简单版本:1≤n,m≤501\leq n,m\leq 501n,m50

对于中等版本:1≤n≤200000,1≤m≤20001\leq n\leq 200000,1\leq m\leq 20001n200000,1m2000

对于困难版本:1≤n,m≤2000001\leq n,m\leq 2000001n,m200000

输出格式

输出一个整数,即整个大楼的 协同值

样例解释

样例对应题目描述中的图,核心部门 111 和核心部门 333 之间的距离为 8>78>78>7,因此不能计入答案。

样例输入
5 7
4 1 1 3 1
3
1 4
3 1
4 3
样例输出
2
搜索
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<fstream>
#include<ctype.h>
#include<math.h>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<string>
#include<iostream>
#include<algorithm>
#include<utility>
#include<iomanip>
#include<time.h>
#include<iostream>
#define lowbit(x) (x&-x)
#define abs(x) ((x)>0?(x):-(x))
using namespace std;
int a[105][105];
int dir[4][2]={0,1,0,-1,-1,0,1,0};
int x2[105],y2[105];
struct node
{
    int x,y,tmp;
}we,ni;
int vis[105][105];
int n,k,maxn=0;
int dfs(int x,int y,int x11,int y11,int bu)
{
    queue<node>q;
    we.x=x;
    we.y=y;
    we.tmp=bu;
    vis[x][y]=1;
    q.push(we);
    while(!q.empty())
    {
        we=q.front();
        q.pop();
        if(we.x==x11&&we.y==y11)
        {
            if(we.tmp<=k)
            {
                //printf("**%d %d\n",we.x,we.y);
                return 1;
            }
            else
            {
                //printf("!!!%d %d\n",we.x,we.y);
                return 0;
            }

        }
        for(int i=0;i<4;i++)
        {
            ni.x=we.x+dir[i][0];
            ni.y=we.y+dir[i][1];
            ni.tmp=we.tmp;
            if(ni.x>=1&&ni.x<=n&&ni.y>=1&&ni.y<=maxn&&!vis[ni.x][ni.y]&&a[ni.x][ni.y]==1)
            {
                ni.tmp+=1;
                vis[ni.x][ni.y]=1;
                q.push(ni);
            }
        }
    }
    return -1;
}
int main()
{
    while(cin>>n>>k)
    {
        maxn=0;
        int en;
        memset(vis,0,sizeof(vis));
        for(int i=1; i<=n; i++)
        {
            cin>>en;
            for(int j=1;j<=en;j++)
                a[i][j]=1;
            maxn=max(en,maxn);
        }
        int m;
        cin>>m;
        for(int i=0; i<m; i++)
        {
            scanf("%d%d",&x2[i],&y2[i]);
        }
        int sum=0;
        for(int i=0;i<m;i++)
        {
            for(int j=i+1;j<m;j++)
            { //printf("##%d %d %d %d\n",x2[i],y2[i],x2[j],y2[j]);
                memset(vis,0,sizeof(vis));
                if(dfs(x2[i],y2[i],x2[j],y2[j],0)==1)
                {

                    sum+=1;
                }
            }
        }
        printf("%d\n",sum);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值