近日,微软新大楼的设计方案正在广泛征集中,其中一种方案格外引人注目。在这个方案中,大楼由 nnn 栋楼组成,这些楼从左至右连成一排,编号依次为 111 到 nnn,其中第 iii 栋楼有 hih_ihi 层。每栋楼的每一层为一个独立的 办公区域,可以步行 直达同层相邻楼栋的办公区域,以及 直达同楼栋相邻楼层的办公区域。
由于方案设计巧妙,上一层楼、下一层楼、向左右移动到相邻楼栋同层的办公区域均刚好需要 111 分钟。在这些办公区域中,有一些被 核心部门 占用了(一个办公区域内最多只有一个核心部门),出于工作效率的考虑,微软希望核心部门之间的移动时间越短越好。对于一个给定的 最大移动时间 kkk,大楼的 协同值 定义为:有多少个 核心部门对 之间的移动时间不超过 kkk。由于大楼门禁的限制,不可以走出整个大楼,也不可以登上天台思考人生。你可以认为在办公区域内的移动时间忽略不计,并且在大楼内总是按照最优方案进行移动。
对于一个给定的新大楼设计方案,你能算出方案的协同值么?
输入格式
第一行包含两个正整数 n,k(1≤k≤200020)n,k(1\leq k\leq 200020)n,k(1≤k≤200020),分别表示大楼的栋数以及最大移动时间。
第二行包含 nnn 个正整数 h1,h2,...,hn(1≤hi≤20)h_1,h_2,...,h_n(1\leq h_i\leq 20)h1,h2,...,hn(1≤hi≤20),分别表示每栋楼的层数。
接下来一行包含一个正整数 mmm,表示 核心部门 个数。
接下来 mmm 行,每行两个正整数 xi,yi(1≤xi≤n,1≤yi≤hxi)x_i,y_i(1\leq x_i\leq n,1\leq y_i\leq h_{x_i})xi,yi(1≤xi≤n,1≤yi≤hxi),表示该核心部门位于第 xix_ixi 栋楼的第 yiy_iyi 层。
输入数据保证 mmm 个核心部门的位置不会重复。
对于简单版本:1≤n,m≤501\leq n,m\leq 501≤n,m≤50;
对于中等版本:1≤n≤200000,1≤m≤20001\leq n\leq 200000,1\leq m\leq 20001≤n≤200000,1≤m≤2000;
对于困难版本:1≤n,m≤2000001\leq n,m\leq 2000001≤n,m≤200000。
输出格式
输出一个整数,即整个大楼的 协同值。
样例解释
样例对应题目描述中的图,核心部门 111 和核心部门 333 之间的距离为 8>78>78>7,因此不能计入答案。
样例输入
5 7 4 1 1 3 1 3 1 4 3 1 4 3
样例输出
2
搜索
#include<cstdio> #include<cstring> #include<stdlib.h> #include<fstream> #include<ctype.h> #include<math.h> #include<stack> #include<queue> #include<map> #include<set> #include<vector> #include<string> #include<iostream> #include<algorithm> #include<utility> #include<iomanip> #include<time.h> #include<iostream> #define lowbit(x) (x&-x) #define abs(x) ((x)>0?(x):-(x)) using namespace std; int a[105][105]; int dir[4][2]={0,1,0,-1,-1,0,1,0}; int x2[105],y2[105]; struct node { int x,y,tmp; }we,ni; int vis[105][105]; int n,k,maxn=0; int dfs(int x,int y,int x11,int y11,int bu) { queue<node>q; we.x=x; we.y=y; we.tmp=bu; vis[x][y]=1; q.push(we); while(!q.empty()) { we=q.front(); q.pop(); if(we.x==x11&&we.y==y11) { if(we.tmp<=k) { //printf("**%d %d\n",we.x,we.y); return 1; } else { //printf("!!!%d %d\n",we.x,we.y); return 0; } } for(int i=0;i<4;i++) { ni.x=we.x+dir[i][0]; ni.y=we.y+dir[i][1]; ni.tmp=we.tmp; if(ni.x>=1&&ni.x<=n&&ni.y>=1&&ni.y<=maxn&&!vis[ni.x][ni.y]&&a[ni.x][ni.y]==1) { ni.tmp+=1; vis[ni.x][ni.y]=1; q.push(ni); } } } return -1; } int main() { while(cin>>n>>k) { maxn=0; int en; memset(vis,0,sizeof(vis)); for(int i=1; i<=n; i++) { cin>>en; for(int j=1;j<=en;j++) a[i][j]=1; maxn=max(en,maxn); } int m; cin>>m; for(int i=0; i<m; i++) { scanf("%d%d",&x2[i],&y2[i]); } int sum=0; for(int i=0;i<m;i++) { for(int j=i+1;j<m;j++) { //printf("##%d %d %d %d\n",x2[i],y2[i],x2[j],y2[j]); memset(vis,0,sizeof(vis)); if(dfs(x2[i],y2[i],x2[j],y2[j],0)==1) { sum+=1; } } } printf("%d\n",sum); } }