【未经许可,不得转载!】
在实际的短纤维增强复合材料RVE中,纤维是杂乱的,如图 1.7所示。
图1.7 RVE中杂乱的短纤维
首先引入一些工具来描述纤维方向。以下描述不仅限于纤维,还可应用于回转椭球体。每个夹杂体的方向用单位向量 p 来描述,在三维空间表述为两个球角度 θ 和 ϕ ,如图 1.8所示。
图1.8 单个夹杂体的方向
由于RVE中每个夹杂体的轴向量 p 均不相同,所以引入 方向分布函数(ODF) ψ(p) 。通过定义 ψ(p)dp 来表示在角 [p,p+dp] 范围内找寻纤维的概率。
考虑一般情况:有 N 族夹杂增强的复合材料,每个夹杂通过相同的刚度、纵横比和ODF来定义:
- 基体相(域
ω0 ):体分比 ν0 ,刚度 C0 ;-
N
个夹杂族
(i) : νi , Ci , ARi ,ODF ψi(p) 。 显然,基体和所有夹杂族的体分比和为1:
ν0+∑i=1Nνi=1
每个ODF遵循两个条件:
ψi(p)=ψi(−p),∮ψi(p)dp=1
其中,第一个方程表示两个相反轴向量为相同的夹杂体;第二个方程是归一化条件,表示概率和为1.
该复合材料在Digimat-MF中分两步进行均匀化,如图1.9所示。真实的RVE被一个伪晶粒的集合来代替。每个伪晶粒占据一个区域 ωi,p ,是一个基本的两相复合材料,由基体相 ν0 和等效对齐的夹杂体集合(该集合从方向 [p,p+dp] 范围内的夹杂族组合而成)组成 。- 每个伪晶粒通过适用于两相复合材料的MFH模型(如Mori-Tanaka或者interpolative Double inclusion)来进行均匀化;
- 计算均匀化后的伪晶粒的有效响应。在当前版本的Digimat-MF中,该步应用的是Voigt模型。尽管Voigt模型不适用于真实的复合材料,但对于本模型,我们的经验表明预测精度较高,即使在最通常的情况下
N=1
。
图1.9 适用于无序夹杂复合材料的两步均匀化程序。上:真实RVE。左中:分解为伪晶粒的集合。下:每个伪晶粒的均匀化(第一步)。右中:均匀化伪晶粒集合的均匀化(第二步)
【本文译自Digimat-MF帮助文档。】
-
N
个夹杂族