3. 全排列问题(回溯)

【问题描述】

输出自然数 1 到 n 所有不重复的排列,即 n 的全排列,要求所产生的任一数字序列中不允许出现重复的数字。

【输入格式】

一个整数n(1≤n≤9)

【输出格式】

按照字典序的顺序输出由 1~n 组成的所有不重复的数字序列,每行一个序列。

【输入样例】

3

【输出样例】

1 2 3 
1 3 2 
2 1 3 
2 3 1 
3 1 2 
3 2 1
#include<bits/stdc++.h>
using namespace std;

int n, a[110];
bool b[110];
 // b[i] 记录 i 这个整数有没有在之前的递归列举中被填写,0表示没有填,1表示填过了  

void f(int x) { // 不仅作为一个参数,代表了当前的递归层数 
	if (x > n) { // x的值超过n的时候,说明已经递归了n次了,已经有n个循环了 
		for (int i=1;i<=n;i++) printf("%d ",a[i]);
		printf("\n"); 
		return;
	}
	for (int i=1;i<=n;i++) { 
		//如果 i 在之前递归中没有被列举到 
		if (b[i]==0) {
			// 如何将不同递归层数当中的枚举出来的数存下来 (设定全局变量) 
			a[x] = i; // 记录,第x层递归枚举出来的数是i 
			b[i] = 1;
			f(x+1);
			// 递归回来的位置 
			b[i] = 0; // i 这个数字又重新可以被使用了 
		}
	}
} // n个1~n的循环在嵌套 
 
int main() {
	scanf("%d",&n);
	// n个循环嵌套,每个循环是1~n,最终删去相同元素方案 
	for (int i=1;i<=n;i++) b[i] = 0; // 初始化,1~n都还没被填写 
	f(1);
	return 0;
}

### C++ 实现全排列算法示例 #### 使用回溯法实现全排列 为了生成给定数组 `nums` 的所有可能排列,可以采用回溯方法。这种方法通过逐步构建候选解并撤销选择来进行探索。 ```cpp #include <vector> using namespace std; void backtrack(vector<int>& nums, vector<vector<int>>& result, int start) { if (start == nums.size()) { result.push_back(nums); return; } for (int i = start; i < nums.size(); ++i) { swap(nums[start], nums[i]); backtrack(nums, result, start + 1); // 继续处理下一个位置 swap(nums[start], nums[i]); // 恢复原状以便尝试其他可能性 } } vector<vector<int>> permute(vector<int>& nums) { vector<vector<int>> result; if (nums.empty()) return result; backtrack(nums, result, 0); return result; } ``` 这段代码展示了如何利用递归来遍历每一个元素作为起始点,并交换当前索引与其他未使用的数值的位置,从而形成新的组合[^1]。 #### 利用标准库函数 `next_permutation` 除了手动编写回溯逻辑外,还可以借助 STL 提供的功能简化开发过程: ```cpp #include <algorithm> #include <vector> vector<vector<int>> permuteSTL(const vector<int>& nums) { vector<vector<int>> permutations; vector<int> temp = nums; sort(temp.begin(), temp.end()); do { permutations.push_back(temp); } while (std::next_permutation(temp.begin(), temp.end())); return permutations; } ``` 此版本先对输入序列进行了排序操作,之后调用了内置的 `next_permutation()` 函数迭代获取所有的排列情况[^4]。 #### 基于协程的全排列方案 对于更复杂的场景或者追求性能优化的情况下,也可以考虑使用协程来并发执行多个子任务以提高效率: ```cpp // 这里仅提供概念性的伪代码框架,具体实现依赖编译器支持程度以及平台特性 generator<vector<int>> coroutinePermute(vector<int> remainingElements){ if(remainingElements.empty()){ co_return; } for(auto& elem : remainingElements){ auto currentElement = elem; auto restOfList = remove_element_from_list(currentElement); yield {currentElement}; for(auto subsequence : coroutinePermute(restOfList)){ yield prepend_to_sequence(subsequence, currentElement); } } } ``` 上述片段展示了一个基于协程的概念模型,在实际应用中需根据目标环境调整语法细节[^2].
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值