机器学习实战(第三篇)-决策树构造

   首先我们分析下决策树的优点和缺点。优点:计算复杂度不高,输出结果易于理解,对中间值的却是不敏感,可以处理不相关特征数据;缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。

   本篇文章我们将一步步地构造决策树算法,并会涉及许多有趣的细节。首先我们先讨论数学上如何使用信息论划分数据集,然后编写将理论应用到具体的数据集上,最后编写代码构建决策树。

   在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征。完成测试之后,原始数据集就被划分为几个数据子集了。这些数据子集会分布在第一个决策点的所有分支上。如果某个分支下的数据属于同一类型,则当前无需阅读的垃圾邮件已经正确地划分数据分类,无需进一步对数据集进行分割。如果数据子集内的数据不属于同一类型,则需要重复划分数据子集的过程。如何划分数据子集的算法和划分原始数据集的方法相同,知道所有具有相同类型的数据均在一个数据子集内。

   创建分支的伪代码函数createBranch()如下所示:

  检测数据集中每个子项是否属于同一个分类:

      IF so return 类标签;

     ELSE

        寻找划分数据集的最好特征

        划分数据集

        创建分支节点

            for 每个划分的子集

                调用函数createBranch()并增加返回结果到分支节点中

        return 分支节点

    上面的伪代码createBranch是一个递归函数,在倒数第二行直接调用了它自己。后面我们将上面的伪代码转换为Python代码,这里我们需要了解算法是如何划分数据集的。

    决策树的一般流程

   (1)收集数据:可以使用任何方法;

   (2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化;

   (3)分析数据:可以使用任何方法,构造树完成后,我们应该检查图形是否符合预期;

   (4)训练算法:构造树的数据结构;

   (5)测试算法:使用经验树计算错误率

   (6)使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。

    一些决策树算法采用二分法划分数据。如果依据某个属性划分数据将会产生四个可能的值,我们把数据划分成四块,并创建四个不同的分支。本章我们将使用ID3算法划分数据集,该算法处理如何划分数据集,何时停止划分数据集。每次划分数据集时我们只选取一个特征属性,如果训练集中存在20个特征,第一次我们选取哪个特征作为划分的参考属性呢?

    下表中包含了5个海洋动物,特征包括:不浮出水面是否可以生存,以及是否有脚蹼。我们可以将这些动物划分为两类:鱼类和非鱼类。现在我们想要决定依据第一个特征还是第二个特征划分数据。在回答这个问题之前,我们必须采用量化的方法判断如何划分数据。

编号不浮出水面是否可以生存是否有脚蹼属于鱼类
1
2
3
4
5
一. 信息增益

    划分数据集的最大原则是:将无序的数据变得更加有序。我们可以使用多种方法划分数据集,但是每种算法都有各自的优缺点。组织杂乱无章数据的另一种方法就是使用信息论度量信息,信息论是量化处理信息的分支科学。我们可以在划分数据之前使用信息论量化度量信息的内容。

    在划分数据集之前之后信息发生的变化成为信息增益,知道如何计算信息增益,我们就可以计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。在可以评测哪种数据划分方式是最好的数据划分之前,我们必须先学习计算信息增益。集合信息的度量方式成为香农熵或称为熵。如果看不明白什么是信息增益(information gain)和熵(entropy)请不要着急。熵定义为信息的期望值,在明确这个概念之前,我们必须知道信息的定义。如果待分类的事务可能划分在多个分类中,则符号x的信息定义为:

     

  其中p(xi)是选择该分类的概率,为了计算熵,我们需要计算所有类别所有可能包含的信息的期望值,通过下面的公式得到:


   其中n是分类的数目。

   下面我们将学习如何使用Python计算信息熵,创建名为tree.py的文件,输入下面的代码内容,下面代码的功能就是计算信息熵:

from math import log
def calcShannonEnt(dataSet):
	numEntries=len(dataSet)
	labelCounts={}
	for featVec in dataSet:
		currentLabel=featVec[-1]
		if currentLabel not in labelCounts.keys():
			labelCounts[currentLabel]=0
		labelCounts[currentLabel]+=1
	shannonEnt=0.0
	for key in labelCounts:
		prob=float(labelCounts[key])/numEntries
		shannonEnt=prob*log(prob,2)
	return shannonEnt
    上面的程序非常简单。首先,计算数据集中实例的总数,我们也可以在需要时再计算这个值,但是由于代码中多次用到这个值,为了提高代码效率,我们显示的申明一个变量保存实例总数。然后,创建一个数据字典,它的键值是最后一列的数值。如果当前键值不存在,则扩展字典并将其加入当前字典。每个键值都记录了当前类别出现的次数。最后,我们所用类标签发生频率计算出类别出现的概率。我们将用这个概率计算香农熵,统计所有类标签发生的次数。下面我们看如何使用熵划分数据集。

   在tree.py文件中,我们可以利用creatDataSet()函数得到上表中的简单鱼鉴定数据集,你可以输入自己的createDataSet()函数:

def createDataSet():
	dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[1,1,'yes'],[0,1,'no'],[0,1,'no']]
	labels=['no surfacing','flippers']
	return dataSet,labels
   在Python命令行中输入下列命令:


   熵越高,则混合的数据也越多,我们可以在数据集中添加更多的分类,观察熵是如何变化的,这我们增加第三个名为maybe的分类,测试熵的变化:


   得到熵之后,我们就可以按照最大信息增益的方法划分数据集,下一节

利用 TensorFlow 训练自己的目标识别器。本文内容来自于我的毕业设计,基于 TensorFlow 1.15.0,其他 TensorFlow 版本运行可能存在问题。.zip项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随与我联系,我会及为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随与我联系,我会及解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值