导弹拦截

                                     想看更多的解题报告: http://blog.csdn.net/wangjian8006/article/details/7870410
                                     转载请注明出处:
http://blog.csdn.net/wangjian8006

Description

某国为了防御敌国的导弹袭击,开发出了一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

Input

输入的第一行为测试用例的个数k(k<50)。
对于每个测试用例,包含2行数据,第一行包含一个正整数n(0<n<=50),表示导弹的个数,其后一行中包含n个导弹依次飞来的高度,所有高度值均为不大于30000的正整数。

Output

对于每个测试用例,有如下三行输出:
第一行输出在拦截导弹最多情况下的所拦截的导弹高度,如果存在多个这样的序列,则输出最大值序列。例如,有如下两个序列:"90 80 70","90 75 70",那么最大值序列应该取"90 80 70"。
第二行输出这套系统最多能拦截的导弹数。
第三行输出要拦截所有导弹最少要配备这种导弹拦截系统的套数。

Sample Input

1
7
9 6 8 5 2 3 1

Sample Output

9 8 5 3 1
5
2

 

 

这是一个裸的最长上升子序列

#include <stdio.h> 
#include <memory.h> 
#define MAXV 60 
  
int a[MAXV],dp[MAXV]; 
  
int main(){ 
    int t,i,n,ma,flag,r,temp,j,tdis,k,tmin; 
    scanf("%d",&t); 
    while(t--){ 
        scanf("%d",&n); 
        for(i=1;i<=n;i++) { 
            scanf("%d",&a[i]); 
            dp[i]=1;
        } 
  
        ma=-1; 
        for(i=n;i>=1;i--){ 
            temp=0,flag=0; 
            for(j=n;j>i;j--) 
                if(a[i]>=a[j] && dp[i]<=dp[j]){
                    dp[i]=dp[j]+1; 
                }
            if(dp[i]>ma) ma=dp[i];       //求最大拦截的个数 
        } 
  
        r=ma;tdis=1;tmin=30001;			//选每个最长下降序列值的最大数输出
        for(i=r;i>=1;i--){ 
            temp=-1; 
            for(j=tdis;j<=n;j++) 
                if(dp[j]==r && a[j]>=temp && a[j]<=tmin){ 
                    temp=a[j]; 
                    k=j; 
                } 
            r--; 
            tmin=a[k]; 
            tdis=k; 
            printf("%d ",a[k]); 
        } 
  
        for(i=1;i<=n;i++) dp[i]=1;       //最少拦截导弹套数 
  
        for(i=n;i>=1;i--) 
            for(j=i+1;j<=n;j++) 
                if(a[j]>a[i] && dp[j]+1>dp[i]) 
                    dp[i]=dp[j]+1; 
  
        temp=-1; 
        for(i=1;i<=n;i++) 
            if(temp<dp[i]) 
                temp=dp[i]; 
              
        printf("\n%d\n%d\n",ma,temp); 
    } 
    return 0; 
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值