机器学习
王健19.10.02
这个作者很懒,什么都没留下…
展开
-
机器学习3.0 监督学习1
监督学习 1.线性回归 (调整)利用几步可以使线性方程靠近所有的点。 梯度下降:梯度下降法又被称为最速下降法(Steepest descend method),其理论基础是梯度的概念。梯度与方向导数的关系为:梯度的方向与取得最大方向导数值的方向一致,而梯度的模就是函数在该点的方向导数的最大值。对于一个无约束的优化问题:minf(x) ,例如y = x*x 平均绝对误差 平均平方误差 ...原创 2020-04-26 09:33:13 · 151 阅读 · 0 评论 -
机器学习2.0基础
1.模型的评估指标 Accuracy:准确率 确诊疾病 确诊健康 疾病 / 真阳性 假阳性 健康 / 真阴性 假阴性 阳性:正确的 阴性:错误的 两个指标 精度:在所有模型诊断的阳性数据中,有多少真阳性。(诊断为疾病的有多少生病1000/1800) 召回率:所有真正阳性数据中,有多少阳性被识别出来了。(生病患者有多少被诊断为生病 1000/1200) F1得分...原创 2020-04-19 12:17:11 · 179 阅读 · 0 评论 -
机器学习1.0
机器学习 机器学习(目的):教会计算机利用过往的经验(数据)完成指定任务。 【或者让计算机具有像人一样的学习能力的技术,从大数据中寻找出有用知识 的数据挖掘技术】 1.SVM支持向量机 两条线哪一个分的更好。使点到线段距离最大。(蓝线到最近的距离点太小,会造成误差) 2.核函数的作用就是隐含着一个从低维空间向高维空间的映射关系,这样就使得在低维空间中线性不可分的两类点在高维空间中线性可分。...原创 2020-04-15 13:44:23 · 140 阅读 · 0 评论