LangChain-v0.2文档翻译
文章平均质量分 86
欢迎订阅《LangChain-v0.2文档翻译》专栏!在这里,我们将带你深入了解 LangChain,一个简化大语言模型(LLM)应用程序开发的框架。无论你是刚入门的初学者,还是有经验的开发者,我们都将一起探索 LangChain 的核心功能、社区集成以及特定的工具支持。通过详细的文档翻译和实用的开
Hugo_Hoo
这个作者很懒,什么都没留下…
展开
-
LangChain-v0.2文档翻译:3.13、如何配置运行时链内部结构
本文介绍了如何在LangChain框架中配置运行时链的内部步骤。LangChain是一个用于构建和部署机器学习模型的Python库,特别适用于构建和配置复杂的处理链。通过。翻译 2024-07-17 17:23:40 · 141 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.12、如何将输入参数从一个链步骤传递到下一个链
本文介绍了LangChain框架中的类,它允许将数据从一个步骤原封不动地传递到另一个步骤。通过示例代码,我们学习了如何使用与结合使用,以及如何在实际应用中格式化输入到提示。翻译 2024-07-16 17:09:45 · 90 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.11、使用LangChain中的自定义函数
本文详细介绍了如何在LangChain框架中使用自定义函数作为Runnables,包括使用构造器、装饰器、自动转换和流式处理。通过示例代码,我们学习了如何显式创建可运行的自定义函数,如何将自定义函数转换为Runnables,以及如何在自定义函数中使用运行元数据和流式处理。翻译 2024-07-15 16:49:48 · 130 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.10、如何为Runnable添加默认调用参数
本文介绍了如何在Python中使用Runnable和RunnableSequence进行参数绑定,包括如何使用Runnable.bind()方法设置常量参数,以及如何进行工具调用。通过示例代码,我们学习了如何构建一个简单的提示+模型链,并展示了如何通过绑定参数来控制模型的输出。此外,还提供了关于如何使用工具调用和如何使用.bind_tools()方法的示例翻译 2024-07-10 17:47:37 · 289 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.9、如何在LangChain中并行调用可运行组件
本文介绍了如何在LangChain中使用RunnableParallel原语来并行执行多个可运行组件,并通过字典形式返回它们的输出结果。通过实际的代码示例,展示了如何使用RunnableParallel进行操作的并行化,以及如何使用itemgetter来简化从映射中提取数据的过程。此外,还讨论了RunnableParallel在执行独立进程时的效率优势。翻译 2024-07-09 17:24:02 · 291 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.8、如何在LangChain中进行流式传输
本文详细介绍了如何在LangChain中使用流式传输,包括同步和异步方法,以及如何通过流式传输事件来监控和处理应用程序的中间步骤。通过实际的代码示例,展示了如何使用。翻译 2024-07-08 18:03:10 · 202 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.7、如何在LangChain中串联可运行组件
本文介绍了LangChain中如何通过管道操作符。翻译 2024-07-05 17:57:56 · 78 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.6、如何调试你的LLM应用
本文介绍了在构建LLM(大型语言模型)应用时的三种主要调试方法:详细模式、调试模式和LangSmith追踪。文章详细解释了每种方法的特点和使用方式,并通过示例代码展示了如何实现这些调试技术。翻译 2024-07-01 17:57:38 · 155 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.5、如何流式传输
在基于大型语言模型(LLMs)的应用中,流式传输对于提升终端用户的响应性至关重要。LangChain 中的重要原语,如聊天模型、输出解析器、提示、检索器和代理,都实现了 LangChain Runnable 接口。翻译 2024-06-27 18:07:08 · 428 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.4、如何使用模型调用工具
本文介绍了如何在LangChain中使用工具调用功能,包括如何定义工具、将工具绑定到聊天模型以及如何调用这些工具。工具调用允许模型在响应提示时生成工具的参数,而实际执行工具则由用户决定。LangChain支持多种内置工具,并允许用户定义自己的自定义工具。此外,还介绍了如何使用方法将工具绑定到聊天模型,并展示了如何在LLM响应中包含工具调用。翻译 2024-06-26 17:11:48 · 220 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.3、如何从模型返回结构化数据
import re# Prompt"system",),Returns:""")```"try:Returns:Returns:json andtags总结与扩展知识本文介绍了如何从语言模型中获取结构化的输出数据,这在将数据插入数据库或与其他系统集成时非常有用。我们探讨了几种方法,包括使用方法、处理多个模式、流式传输输出、少量示例提示、直接提示和解析模型等。翻译 2024-06-24 18:32:08 · 609 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.2、如何将 LangChain 与不同的 Pydantic 版本一起使用
本文提供了LangChain与不同Pydantic版本共存的解决方案和最佳实践。通过示例代码,我们了解到如何避免在代码中混合使用Pydantic v1和v2,以及如何在LangChain中正确地使用Pydantic模型。这对于维护代码的兼容性和稳定性至关重要。翻译 2024-06-18 17:53:50 · 543 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.3、如何从模型返回结构化数据
import re# Prompt"system",),Returns:""")```"try:Returns:Returns:扩展知识LangChain:是一个用于构建AI助手和应用程序的Python库,提供了与不同AI模型交互的接口。OpenAI API:是由OpenAI公司提供的API服务,允许开发者在自己的应用程序中使用预训练的AI模型。Pydantic:是一个用于数据验证和配置管理的Python库,它使用Python类型注解来验证输入数据,并提供了丰富的数据验证功能。翻译 2024-06-13 16:41:56 · 454 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3.1、操作指南-安装
是一个用于构建具有状态的、多参与者应用程序的库,这些应用程序使用LLMs构建,并在LangChain之上(并打算与LangChain一起使用)。LangServe会被LangChain CLI自动安装。LangChain CLI对于使用LangChain模板和其他LangServe项目非常有用。包包含LangChain生态系统其余部分使用的基类抽象以及LangChain表达式语言。LangSmith SDK会被LangChain自动安装。自动安装,但也可以单独使用。您需要单独安装特定集成的依赖项。翻译 2024-06-12 17:38:42 · 266 阅读 · 0 评论 -
LangChain-v0.2文档翻译:3、操作指南
所有LangChain组件都可以轻松扩展以支持您自己的版本。如何创建自定义聊天模型类如何创建自定义LLM类如何编写自定义检索器类如何编写自定义文档加载器如何编写自定义输出解析器类如何创建自定义回调处理器如何定义自定义工具。翻译 2024-06-12 17:33:13 · 98 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.14、教程-总结文本
假设您有一组文档(PDF、Notion页面、客户问题等),并且您想要总结这些内容。鉴于它们在理解和综合文本方面的熟练程度,大型语言模型(LLMs)是完成这项任务的绝佳工具。在增强型检索生成的背景下,总结文本可以帮助提炼大量检索到的文档中的信息,为LLM提供上下文。在本教程中,我们将介绍如何使用LLMs从多个文档中总结内容。构建摘要器的一个核心问题是如何在LLM的上下文窗口中传递您的文档。Stuff:简单地将所有文档“塞入”单个提示中。这是最简单的方法(请参阅此处,了解用于此方法的构造函数的更多信息)翻译 2024-06-07 17:19:37 · 105 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.13、教程-将文本分类为标签
让我们来看一个非常直接的例子,展示如何使用LangChain中的OpenAI工具调用进行标记(tagging)。我们将使用OpenAI模型支持的。结果会有所变化,例如,我们可能会得到不同语言中的情感(‘positive’, 'enojado’等)。让我们在我们的模式中指定一个具有几个属性及其预期类型的Pydantic模型。正如我们在示例中看到的,它正确地解释了我们想要什么。:与提取一样,标记使用函数来指定模型应如何标记文档。仔细的模式定义让我们对模型的输出有更多的控制。:定义我们如何标记文档。翻译 2024-06-06 16:21:14 · 99 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.12、教程-生成合成数据
合成数据是人工生成的数据,而不是从现实世界事件中收集的数据。它用于模拟真实数据,而不会泄露隐私或遇到现实世界的限制。合成数据的优势:隐私和安全:没有真实的个人数据面临泄露风险。数据增强:扩展机器学习的数据集。灵活性:创建特定或罕见的场景。成本效益:通常比现实世界数据收集更便宜。监管合规:有助于应对严格的数据保护法律。模型鲁棒性:可以带来更好的泛化AI模型。快速原型设计:无需真实数据即可快速测试。控制实验:模拟特定条件。数据访问:当真实数据不可用时的替代方案。翻译 2024-06-05 16:51:58 · 115 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.11、教程-构建一个提取链
Jupyter笔记本非常适合学习如何使用大型语言模型(LLM)系统,因为经常会出现问题(意外输出、API 故障等),而在交互式环境中阅读指南是更好地理解它们的好方法。LLM是生成性模型,所以它们可以做一些非常酷的事情,比如正确地以米为单位提取个人的身高,即使它以英尺提供!为了获得最佳性能,请很好地记录模式并确保如果文本中没有要提取的信息,模型就不会强制返回结果。请参阅此处了解如何安装的说明。在这个教程中,我们将构建一个链来从未结构化的文本中提取结构化信息。首先,我们需要描述我们想要从文本中提取的信息。翻译 2024-06-04 16:27:38 · 139 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.10、教程-基于图形数据库构建问答应用程序
在这个指南中,我们将介绍在图数据库上创建问答(Q&A)链的基本方法。这些系统将允许我们询问图数据库中的数据,并得到一个自然语言的答案。翻译 2024-06-04 16:09:05 · 88 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.9、教程-基于查询分析系统构建一个本地RAG应用程序
像PrivateGPTllama.cppGPT4All和llamafile这样的项目的流行度突显了本地运行大型语言模型(LLMs)的重要性。LangChain与许多可以本地运行的开源LLMs集成`。例如,这里我们展示了如何使用本地嵌入和本地LLM本地(例如,在您的笔记本电脑上)运行GPT4All或LLaMA2。翻译 2024-06-03 17:56:48 · 120 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.8、教程-构建查询分析系统
*构建查询分析系统将展示如何在一个基本的端到端示例中使用查询分析。这将涵盖创建一个简单的搜索引擎,展示当将原始用户问题传递给该搜索时发生的故障模式,然后是一个查询分析如何帮助解决这个问题的例子。有不同的查询分析技术,这个端到端的示例不会展示所有的技术。为了这个示例的目的,我们将在LangChain YouTube视频上进行检索。翻译 2024-06-03 17:37:32 · 102 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.7、教程-在SQL数据上构建一个问答系统
使大型语言模型(LLM)查询结构化数据与查询非结构化文本数据有质的不同。在后者中,通常生成可以针对向量数据库搜索的文本,而结构化数据的方法通常是让LLM编写并在DSL(例如SQL)中执行查询。在本指南中,我们将介绍在数据库中创建表格数据上的问答系统的基本方法。我们将涵盖使用链(chains)和代理(agents)的实现。这些系统将允许我们询问数据库中的数据并得到自然语言答案。两者之间的主要区别在于,我们的代理可以根据需要多次循环查询数据库以回答问题。翻译 2024-05-31 16:34:06 · 440 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.6、教程-构建一个会话式RAG应用程序
在许多问答应用中,我们希望允许用户进行来回的对话,这意味着应用程序需要对过去的问题和答案有一些“记忆”,并且需要一些逻辑来将这些记忆融入到当前的思考中。本文将重点介绍。关于聊天历史管理的更多细节在这里有介绍。对于外部知识源,我们将使用由Lilian Weng在RAG教程中写的关于LLM驱动的自治代理的博客文章。翻译 2024-05-30 17:38:15 · 198 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.5、教程-构建检索增强生成 (RAG) 应用程序
如上所示,我们可以从提示中心加载提示(例如,此RAG提示)。{context}| llm")检查LangSmith跟踪。翻译 2024-05-27 11:17:54 · 205 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.4、教程-构建一个代理
我们首先需要创建我们想要使用的工具。Tavily(用于在线搜索)以及我们将创建的本地索引的检索器。翻译 2024-05-24 11:17:16 · 261 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.3、教程-构建向量存储库和检索器
这个教程将帮助您熟悉LangChain的向量存储和检索器抽象概念。这些抽象概念旨在支持从向量数据库和其他来源检索数据,以便与LLM(大型语言模型)工作流程集成。它们对于应用程序来说非常重要,这些应用程序需要获取数据以作为模型推理的一部分进行推理,就像检索增强生成(RAG)的情况一样(请参阅我们这里关于RAG的教程)。翻译 2024-05-23 10:56:39 · 207 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.2、教程-构建一个聊天机器人
我们将介绍如何设计和实现一个由LLM(大型语言模型)驱动的聊天机器人的例子。这个聊天机器人能够进行对话并记住之前的互动。请注意,我们构建的聊天机器人将仅使用语言模型进行对话。对话式RAG(Retrieval-Augmented Generation):通过外部数据源启用聊天机器人体验代理(Agents):构建一个能够采取行动的聊天机器人本教程将涵盖对这两个更高级主题有帮助的基础知识,但如果您选择,也可以直接跳转到那里。翻译 2024-05-22 18:14:21 · 301 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2.1、教程-构建一个简单的 LLM 应用程序
这篇文章是关于如何构建一个简单的大型语言模型(LLM)应用程序的快速入门指南。这个应用程序将文本从英语翻译成另一种语言。这是一个相对简单的LLM应用程序——它只是一个单一的LLM调用加上一些提示。尽管如此,这是开始使用LangChain的好方法——只需一些提示和一个LLM调用,就可以构建许多特性!翻译 2024-05-22 11:03:44 · 507 阅读 · 0 评论 -
LangChain-v0.2文档翻译:2、教程
新手入门LangChain或LLM应用程序开发?阅读这些材料可以快速上手。翻译 2024-05-22 00:00:00 · 269 阅读 · 0 评论 -
LangChain-v0.2文档翻译:1、介绍
在这里,您将找到所有 LangChain 概念的高层次解释。LangChain 是一个丰富的工具生态系统的一部分,这些工具与我们的框架集成并在其上构建。构建基于 LangChain 原语构建的有状态、多参与者应用程序,并打算与 LangChain 一起使用。跟踪和评估您的语言模型应用程序和智能代理,帮助您从原型过渡到生产。是一个用于开发由大型语言模型(LLMs)驱动的应用程序的框架。如果您想要构建特定的东西或者更倾向于实践学习,请查看我们的。查看开发者指南,了解贡献的指南并帮助设置您的开发环境。翻译 2024-05-21 18:04:32 · 306 阅读 · 0 评论