深度学习-caffe在cifar10、mnist数据集cpu、gpu训练速度对比(deepin15.11+caffe+cpu+gpu+cifar10+mnist)

背景

gpu的训练速度优于cpu,那么到底快多少呢?本博客拿caffe、cifar10做一下测试。

机器配置

系统:deepin 15.11
cpu:i7 7700
内存:32G 2400hz
显卡:gtx1080(中端)

mnist数据集

10000次迭代,使用lenet(lenet_solver.prototxt)。

gpu训练

耗费时间:14s
在这里插入图片描述

cpu训练

08:43:48
耗时 = 17:16:00 - 17:23:39 = 8分钟
在这里插入图片描述

cifar10数据集

迭代5000次,使用caffenet

gpu训练

在这里插入图片描述
耗时19s

cpu训练

08:49:57 - 09:16:19
耗时:27分钟

总结

  • gpu大约是cpu的30-80倍
  • 每次batch的size数据越大,gpu提升的速度更加明显
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值