There is a room with n bulbs, numbered from 1 to n, arranged in a row from left to right. Initially, all the bulbs are turned off.
At moment k (for k from 0 to n - 1), we turn on the light[k] bulb. A bulb change color to blue only if it is on and all the previous bulbs (to the left) are turned on too.
Return the number of moments in which all turned on bulbs are blue.
Example 1:
Input: light = [2,1,3,5,4]
Output: 3
Explanation: All bulbs turned on, are blue at the moment 1, 2 and 4.
Example 2:
Input: light = [3,2,4,1,5]
Output: 2
Explanation: All bulbs turned on, are blue at the moment 3, and 4 (index-0).
Example 3:
Input: light = [4,1,2,3]
Output: 1
Explanation: All bulbs turned on, are blue at the moment 3 (index-0).
Bulb 4th changes to blue at the moment 3.
Example 4:
Input: light = [2,1,4,3,6,5]
Output: 3
Example 5:
Input: light = [1,2,3,4,5,6]
Output: 6
Constraints:
- n == light.length
- 1 <= n <= 5 * 10^4
- light is a permutation of [1, 2, …, n]
建一个binary heap, 将数组里的数一个个的放到heap中, 当heap中的最大值与heap的长度相等的时候所有灯泡都是蓝色的。
代码实现(Rust):
use std::collections::BinaryHeap;
impl Solution {
pub fn num_times_all_blue(light: Vec<i32>) -> i32 {
let mut heap: BinaryHeap<i32> = BinaryHeap::new();
let mut ans = 0;
for l in light {
heap.push(l);
if *heap.peek().unwrap() as usize == heap.len() {
ans += 1;
}
}
ans
}
}