棋盘问题 题解
题目链接:
http://poj.org/problem?id=1321
题目:
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
输入:
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
输出:对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
思路:
这题用dfs来解 dfs函数只有一个形参,那就是行数,因为题目中说了两个棋子不能放在一个棋盘的同一行或同一列,所以,一行只能选一个能放棋子的位置来放棋子。首先定义一个数组,visited用来记录第i列是否有棋子放入,注意 是第i列。
然后定义一个全局变量way来记录已经往棋盘中放入了多少个棋子了,递归的边界条件就是way等于k;(这道题很像八皇后问题,但有比较简单只需要统计一下比较好理解)
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=10;
char c[maxn][maxn];
int visit[maxn];//记录每一列是否已经放入棋子(h-1行)
int ans=0;//统计个数
int way=0;//已经放入的棋子的个数
int n,k;
void dfs(int x){//x行数
if(way==k){//但放入的棋子数等于需要放入的棋子数时,方案+1
ans++;
return;
}
if(x>=n){//当行数大于棋盘时,并且需求的棋子数比实际的棋子数少时,返回空,这种方案不对
return;
}
for(int i=0;i<n;i++){//从x行开始遍历每一列是否可以放
if(!visit[i]&&c[x][i]=='#'){
visit[i]=1;
way++;
dfs(x+1);
//还原 假如第0行有两个# 当从第0行的第一个#开始往下走时,
//假设第2行中有且只有一个#,并且不与第一行中的任意一个在同
//一列,那么在往下走时就会把这个#标记 当递归返回到第一行
//第一个#时 i会++ 到第一行的第2个# 函数继续会继续往下走,
//到达第2行的那个#,因为在第一行第一个#那条路径中
// 已经走过了第2行的那个#(因为第2行只有一个#并且这个#所在
//的列数不与第一行两个#重合),如果不把第一次走过第二行的#
//的标记消除 那么这次路径就不会再过第二行的
visit[i]=0;
way--;
}
}
dfs(x+1);//如果当前这一行没有被标记过的#(visit=0)时执行该操作执行下一行,如果没有该操作你的代码会有问题
}
int main(int argc, char** argv) {
while(cin>>n&&cin>>k){
if(n==-1&&k==-1){
break;
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
cin>>c[i][j];
}
}
dfs(0);
cout<<ans<<endl;
ans=0;
way=0;
memset(visit,0,sizeof(visit));
}
return 0;
}
代码分析:
分析一下dfs函数如何运行。首先,在主函数中先将h=0进入dfs函数(表示搜索第1行),然后用一个for循环来依次访问这一行中的每个字符,如果可以往下走,就把visited[i]标记为1(即第i列已经走过),让way加1,这样,dfs进入第2行,然后在进行上述过程,当way等于给定的k时,种数加1。假如way小于k,但是h已经大于题目给定的行数时,直接返回上一层函数,不用再访问了,因为这一行不存在。dfs的关键在于当这一层所有的字符都访问完成后,应该在再个dfs(h+1),如果没有,那么当其中一行所有的字符都不满足if(!visited[i]&&a[h][i]==’#’)这个条件是,说明这一行没有满足条件的,所以dfs函数不可能进入到这一行的下一行,所以无法探索这一行后面行的字符,所以肯定不对。但当加了(最下面的)dfs(h+1)后,因为这一行所有的字符都不会满足条件,那么for循环结束后会因为dfs(h+1)这条语句进入下一行,继续访问这一行的下一行