IplImage结构

  1. IplImage是OpenCV中CxCore部分基础的数据结构,用来表示图像,其中Ipl是Intel Image Processing Library的简写。
  2. typedef struct _IplImage  
  3.     {  
  4.         int  nSize;         /* IplImage大小 */  
  5.         int  ID;            /* 版本 (=0)*/  
  6.         int  nChannels;     /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */  
  7.         int  alphaChannel;  /* 被OpenCV忽略 */  
  8.         int  depth;         /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U, 
  9.                                IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */  
  10.         char colorModel[4]; /* 被OpenCV忽略 */  
  11.         char channelSeq[4]; /* 同上 */  
  12.         int  dataOrder;     /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道. 
  13.                                cvCreateImage只能创建交叉存取图像 */  
  14.         int  origin;        /* 0 - 顶—左结构, 
  15.                                1 - 底—左结构 (Windows bitmaps 风格) */  
  16.         int  align;         /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */  
  17.         int  width;         /* 图像宽像素数 */  
  18.         int  height;        /* 图像高像素数*/  
  19.         struct _IplROI *roi;/* 图像感兴趣区域. 当该值非空只对该区域进行处理 */  
  20.         struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */  
  21.         void  *imageId;     /* 同上*/  
  22.         struct _IplTileInfo *tileInfo; /*同上*/  
  23.         int  imageSize;     /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/  
  24.         char *imageData;  /* 指向排列的图像数据 */  
  25.         int  widthStep;   /* 排列的图像行大小,以字节为单位 */  
  26.         int  BorderMode[4]; /* 边际结束模式, 被OpenCV忽略 */  
  27.         int  BorderConst[4]; /* 同上 */  
  28.         char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */  
  29.     }  
  30.     IplImage;  
  31. 直接访问:

    对我们来说比较重要的两个元素是:char *imageData以及widthStep。imageData存放图像像素数据,而widStep类似CvMat中的step,表示以字节为单位的行数据长度。

    一个m*n的单通道字节型图像,其imageData排列如下:


    如果我们要遍历图像中的元素,只需:

    1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);  
    2. ucha* tmp;  
    3. for(int i=0;i<img->width;i++)  
    4.     for(int j=0;j<img->height;j++)  
    5.         tmp=((uchar *)(img->imageData + i*img->widthStep))[j];  

    这种直接访问的方法速度快,但容易出错,我们可以通过定义指针来访问。即:

    1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);  
    2. ucha* data=(uchar *)img->imageData;  
    3. int step = img->widthStep/sizeof(uchar);  
    4. ucha* tmp;  
    5. for(int i=0;i<img->width;i++)  
    6.     for(int j=0;j<img->height;j++)  
    7.         tmp=data[i*step+j];  

    而多通道(三通道)字节图像中,imageData排列如下:

    其中(Bi,Bj)(Gi,Gj)(Ri,Rj)表示图像(i,j)处BGR分量的值。使用指针的遍历方法如下:

    1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);  
    2. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);  
    3. ucha* data=(uchar *)img->imageData;  
    4. int step = img->widthStep/sizeof(uchar);  
    5. int channels = img->nChannels;  
    6. ucha *b,*g,*r;  
    7. for(int i=0;i<img->width;i++)  
    8.      for(int j=0;j<img->height;j++){  
    9.            b=[i*step+j*chanels+0];  
    10.            g=[i*step+j*chanels+1];  
    11.            r=[i*step+j*chanels+2];  
    12.       }  

    *如果要修改某像素值,则直接赋值。

    使用cvGet2D()函数访问:

    cvGet*D系列函数可以用来返回特定位置的数组元素(一般使用cvGet2D),原型如下:
    1. CvScalar cvGet1D( const CvArr* arr, int idx0 );  
    2. CvScalar cvGet2D( const CvArr* arr, int idx0, int idx1 );  
    3. CvScalar cvGet3D( const CvArr* arr, int idx0, int idx1, int idx2 );  
    4. CvScalar cvGetND( const CvArr* arr, int* idx );  
    idx0,idx1,idx2分别用来指示元素数组下标,即cvGet2D返回(idx0,idx1)处元素的值。
    因此,单通道图像像素访问方式如下:
    1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);  
    2. CvScalar s;  
    3. double tmp;  
    4. for(int i=0;i<img->width;i++)  
    5.     for(int j=0;j<img->height;j++)  
    6.         tmp=cvGet2D(img,i,j).val[0];  
    多通道字节型/浮点型图像:
    1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);  
    2. CvScalar s;  
    3. double tmpb,tmpg,bmpr;  
    4. for(int i=0;i<img->width;i++)  
    5.     for(int j=0;j<img->height;j++){  
    6.         tmpb=cvGet2D(img,i,j).val[0];  
    7.         tmpg=cvGet2D(img,i,j).val[1];  
    8.         tmpr=cvGet2D(img,i,j).val[2];  
    9.     }  
    如果是修改元素的值,可用cvSet*D(一般是cvSet2D)函数:
    1. void cvSet1D( CvArr* arr, int idx0, CvScalar value );  
    2. void cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value );  
    3. void cvSet3D( CvArr* arr, int idx0, int idx1, int idx2, CvScalar value );  
    4. void cvSetND( CvArr* arr, int* idx, CvScalar value );  
    这种方法对于任何图像的访问方式是一样的,比较简单,但效率较低,不推荐使用。

发布了3 篇原创文章 · 获赞 15 · 访问量 25万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览