BP算法及例子

用如下图1的神经网络结构(正向神经网络结构为2-4-4-2-1 )去逼近函数:

f(x1,x2) = (x1-1)^4 + 2×x2^2。

1)网络各神经元的激发函数为:s函数——F(x) = 1/(1+exp(-x)) ;

2)输入层的神经元不是真正的神经元,它们的输出等于输入。

3)取20个样本值作为训练用。

4)x1,x2的取值范围:0≤x1,x2≤1。

5)误差<0.0001

 

 

 

求解过程

1、对要逼近的函数f(x1,x2) = (x1-1)^4 + 2×x2^2 进行分析。x1,x2的取值范围:0≤x1,x2≤1。那么,输入不用归一化(若下x1,x2的值域不再0~1,那就要输入归一化了,因为我们可以从神经网络的激发函数可以看出,输入在0~1时,变化率是很大的,所以网络对输出很敏感)。求该函数的值域,很显然该函数的值域为:0~3,这就需要归一化了,因为神经网络输出的值只能在0~1之间。设Out_Exp[i]为第i个输入样本的期望值,那么归一化后的期望输出为:Out_Exp[i]/3,用这个值和网络的输出进行比较,来进行训练。最后在网络输出时要反归一化,即把网络的输出乘以3。

2、由于BP算 法的步骤是一定的,我们只要把其思想转化为程序就行了,即把数学表达式转换为程序。我们知道在计算机中每一种算法都需要一定的数据结构去支持。由于算法已 确定,那么我们只要分析和确定其数据结构即可。首先,我们考虑在如何计算机程序设计中表示权系数和阀值,在这里我们定义了3维数组W[Layer_Max][Node_Max][Node_Max+1]用来表示神经网络的全部权系数和阀值,我们约定W[i][j][k]存储网络的权系数,其中i表示为神经网络的第i层,j表示为第i层网络的第j个神经元,k表示为第i -1层的第j个神经网络。那么,W[i][j][k]表示为第i层的第j个神经元和第i -1层的第k个神经元的权系数。W[i][j][Layer[i-1]+1]表示第i层第j个神经元的阀值。

注:1、Layer_Max表示网络结构的层数

2、Node_Max表示整个神经网络中各层中含有神经元的最大数目的个数

3、Layer[i]数组表示网络中第i层的神经元的个数

然后,我们定义网络输入的和期望输出数组。定义2维数组Input_Net[2][21]作为网络输入数组,在这里为了方便取了21样本作为,其中x1取值从0开始,已每次加0.05的步长作为下一个样本取值。而x2的取值则与之相反。那么,由于x1和x2各有21个值,由排列组合得出网络训练样本一共有21*21=421个样本。我们再定义一个2维数组Out_Exp[21][21]表示期望输出。定义二维数组Layer_Node[i][j]存储各层神经元的输出,表示为第i层的第j个神经元的输出。定义二维数组D[i][j]存储各层神经元的的误差微分,表示为第i层的第j个神经元的的误差微分。

3、代价函数为(NetOut(i ,j)-Out_Exp[i][j])^2/2。其中:NetOut(i,j)表示输入x1的第i个值和x2的第j个值所组成的样本时,网络的实际输出。

4、确定BP算法的关键的子程序。

a) 、F( double x ) 该函数是该神经网络的唯一激发函数,它的数学表达:

F( x ) = 1/(1+exp(-x)) 。它的输入为样本值NetIn[i]。输出为一个在区间。

b)、Initialize() 该函数是网络初始化子程序,它初始化权系数和阀值,学习速率,误差精度等。

c)、 NetWorkOut( int i ,int j) 该函数的输入为表示输入x1的第i个值和x2的第j个值所组成的样本时,在计算网络输出的时候,同时计算各层神经元的输出,并保存在Layer_Node[][]数组里。输出为神经网络的实际输出。

d)、 AllLayer_D(int i , int j) 该函数的输入为输入x1的第i个值和x2的第j个值所组成的样本的数组下标,目的是计算各层神经元的误差微分,并把他们保存在D[][]数组里。

e)、 Change_W( ) 该函数是用于根据AllLayer_D( )计算出来的误差微分改变权系数,根据经典的BP算法可以写出改变权系数和阀值式子:

W[i][j][k] = W[i][j][k] – Study_Speed*D[i][j]* Layer_Node[i-1][k]

W[i][j][Layer[i-1]+1]=W[i][j][Layer[i-1]+1]+Study_Speed*D[i][j]*

Layer_Node[i-1][ [Layer[i-1]+1]

其中:Study_Speed为学习速率,取值在(0,1)之间,如果太大了,网络将会出现振荡,而不能收敛。

g)、 Train( ) 该函数是用于神经网络训练用的。它调用了上面几个函数来完成网络训练的。当训练完(即网络对于该问题是可以收敛的)时,网络就可以在特定的误差范内逼近函数。下面给出该函数的流程图:

 

 


//---------------------------------------------------------------------------------------//
// BP算法例子:用一个五层的神经网络去逼近函数 //
// f(x1,x2)=pow(x1-1,4)+2*pow(x2,2) //
// 作者:MaxMatrix //
// 2004.5.9调通 运行于VC++6.0 //
//--------------------------------------------------------------------------------------//

#include<iostream.h>
#include<math.h>
#include<stdlib.h>
#include<time.h>
#include<fstream.h>
//---------------------------------------------------------------------
#define RANDOM rand()/32767.0 //0~1随机数生成函数

const int Layer_Max=5;//神经网络的层数

const double PI=3.1415927;//圆周率

const int Layer_number[Layer_Max]={2,4,4,2,1};//神经网络各层的神经元个数

const int Neural_Max=4;//神经网络各层最大神经元个数

const int InMax=21;//样本输入的个数

ofstream Out_W_File("All_W.txt",ios::out) ;
ofstream Out_Error("Error.txt",ios::out) ;

//定义类 BP
class BP
{
public:
BP(); //BP类的构造函数

void BP_Print();//打印权系数

double F(double x);//神经元的激发函数

double Y(double x1,double x2);//要逼近的函数
//
double NetWorkOut(int x1 , int x2);//网络输出,他的输入为
//第input个样本
void AllLayer_D(int x1 , int x2);//求所有神经元的输出误差微分

void Change_W(); //改变权系数

void Train(); //训练函数

void After_Train_Out(); //经过训练后,21样本的神经网络输出

double Cost(double out,double Exp);//代价函数

private:
double W[Layer_Max][Neural_Max][Neural_Max];//保存权系数
//规定W[i][j][k]表示网络第i层的第j个神经元连接到
//第i-1层第k个神经元的权系数
double Input_Net[2][InMax];//21个样本输入,约定Input_Net[0][i]
//表示第i个样本的输入x1
//而 Input_Net[1][i]表示第i个样本的输入x2
double Out_Exp[InMax][InMax];//期望输出

double Layer_Node[Layer_Max][Neural_Max];//保存各神经元的输出
//规定Layer_Node[i][j]表示第i层的第j个神经元的输出

double D[Layer_Max][Neural_Max];//保存各神经元的误差微分
//规定D[i][j]表示第i层第j个神经元的误差微分

double Study_Speed;//学习速度

double e;//误差
};

//构造函数,用来初始化权系数,输入,期望输出和学习速度
BP::BP()
{
srand(time(NULL));//播种,以便产生随即数
for(int i=1 ; i<Layer_Max ; i++)
{
for(int j=0 ; j<Layer_number[i] ; j++)
{
for(int k=0 ; k<Layer_number[i-1]+1 ; k++)
{
W[i][j][k] = RANDOM;//随机初始化权系数

}
// Q[i][j] = RANDOM ;//初始化各神经元的阀值
}
}
//输入归和输出归一化
for(int l=0 ; l<InMax ; l++)
{
Input_Net[0][l] = l * 0.05 ;//把0~1分成20等分,表示x1
Input_Net[1][l] = 1 - l * 0.05 ;//表示x2
}
for(i=0 ; i<InMax ; i++)
{
for(int j=0 ; j<InMax ; j++)
{
Out_Exp[i][j] = Y(Input_Net[0][i],Input_Net[1][j]) ;//期望输出
Out_Exp[i][j] = Out_Exp[i][j]/3.000000;//期望输出归一化
}
}

Study_Speed=0.5;//初始化学习速度

e=0.0001;//误差精度


}//end
//激发函数F()
double BP::F(double x)
{
return(1.0/(1+exp(-x)));
}//end

//要逼近的函数Y()
//输入:两个浮点数
//输出:一个浮点数
double BP::Y(double x1,double x2)
{
double temp;
temp = pow(x1-1,4) + 2 * pow(x2,2);
return temp;
}//end
//--------------------------------------------------------
//代价函数
double BP::Cost(double Out,double Exp)
{
return(pow(Out-Exp,2));
}//end

//网络输出函数
//输入为:第input个样本
double BP::NetWorkOut(int x1 , int x2)
{
int i,j,k;
double N_node[Layer_Max][Neural_Max];
//约定N_node[i][j]表示网络第i层的第j个神经元的总输入
//第0层的神经元为输入,不用权系数和阀值,即输进什么即输出什么
N_node[0][0] = Input_Net[0][x1] ;
Layer_Node[0][0] = Input_Net[0][x1] ;
N_node[0][1] = Input_Net[1][x2] ;
Layer_Node[0][1] = Input_Net[1][x2] ;

for(i=1 ; i<Layer_Max ; i++)//神经网络的第i层
{
for(j=0 ; j<Layer_number[i] ; j++)//Layer_number[i]为第i层的
{ //神经元个数
N_node[i][j] = 0.0;
for(k=0 ; k<Layer_number[i-1] ; k++)//Layer_number[i-1]
{ //表示与第i层第j个神经元连接的上一层的
//神经元个数

//求上一层神经元对第i层第j个神经元的输入之和
N_node[i][j]+=Layer_Node[i-1][k] * W[i][j][k];

}
N_node[i][j] = N_node[i][j]-W[i][j][k];//减去阀值

//求Layer_Node[i][j],即第i层第j个神经元的输出
Layer_Node[i][j] = F(N_node[i][j]);
}
}
return Layer_Node[Layer_Max-1][0];//最后一层的输出
}//end

//求所有神经元的输出误差微分函数
//输入为:第input个样本
//计算误差微分并保存在D[][]数组中
void BP::AllLayer_D(int x1 , int x2)
{
int i,j,k;
double temp;
D[Layer_Max-1][0] = Layer_Node[Layer_Max-1][0] *
(1-Layer_Node[Layer_Max-1][0])*
(Layer_Node[Layer_Max-1][0]-Out_Exp[x1][x2]);
for(i=Layer_Max-1 ; i>0 ; i--)
{
for(j=0 ; j<Layer_number[i-1] ; j++)
{
temp = 0 ;
for(k=0 ; k<Layer_number[i] ; k++)
{
temp = temp+W[i][k][j]*D[i][k] ;
}
D[i-1][j] = Layer_Node[i-1][j] * (1-Layer_Node[i-1][j])
*temp ;
}
}
}//end
//修改权系数和阀值
void BP::Change_W()
{
int i,j,k;
for(i=1 ; i<Layer_Max ; i++)
{
for(j=0;j<Layer_number[i];j++)
{
for(k=0;k<Layer_number[i-1];k++)
{
//修改权系数
W[i][j][k]=W[i][j][k]-Study_Speed*
D[i][j]*Layer_Node[i-1][k];

}
W[i][j][k]=W[i][j][k]+Study_Speed*D[i][j];//修改阀值
}
}
}//end
//训练函数
void BP::Train()
{
int i,j;
int ok=0;
double Out;
long int count=0;
double err;
ofstream Out_count("Out_count.txt",ios::out) ;
//把其中的5个权系数的变化保存到文件里
ofstream outWFile1("W[2][0][0].txt",ios::out) ;
ofstream outWFile2("W[2][1][1].txt",ios::out) ;
ofstream outWFile3("W[1][0][0].txt",ios::out) ;
ofstream outWFile4("W[1][1][0].txt",ios::out) ;
ofstream outWFile5("W[3][0][1].txt",ios::out) ;

while(ok<441)
{
count++;
//20个样本输入
for(i=0,ok=0 ; i<InMax ; i++)
{
for(j=0 ; j<InMax ; j++)
{
Out = NetWorkOut(i,j);

AllLayer_D(i,j);

err = Cost(Out,Out_Exp[i][j]);//计算误差

if(err<e) ok++; //是否满足误差精度

else Change_W();//否修改权系数和阀值
}

}
if((count%1000)==0)//每1000次,保存权系数
{
cout<<count<<" "<<err<<endl;
Out_count<<count<<"," ;
Out_Error<<err<<"," ;
outWFile1<<W[2][0][0]<<"," ;
outWFile2<<W[2][1][1]<<"," ;
outWFile3<<W[1][0][0]<<"," ;
outWFile4<<W[1][1][0]<<"," ;
outWFile5<<W[3][0][1]<<"," ;
for(int p=1 ; p<Layer_Max ; p++)
{
for(int j=0 ; j<Layer_number[p] ; j++)
{
for(int k=0 ; k<Layer_number[p-1]+1 ; k++)
{
Out_W_File<<'W'<<'['<<p<<']'
<<'['<<j<<']'
<<'['<<k<<']'
<<'='<<W[p][j][k]<<' '<<' ';
}
}
}
Out_W_File<<'\n'<<'\n' ;
}

}
cout<<err<<endl;
}//end

//打印权系数
void BP::BP_Print()
{
//打印权系数
cout<<"训练后的权系数"<<endl;
for(int i=1 ; i<Layer_Max ; i++)
{
for(int j=0 ; j<Layer_number[i] ; j++)
{
for(int k=0 ; k<Layer_number[i-1]+1 ; k++)
{
cout<<W[i][j][k]<<" ";
}
cout<<endl;
}
}
cout<<endl<<endl;
}//end

//把结果保存到文件
void BP::After_Train_Out()
{
int i,j ;
ofstream Out_x1("Out_x1.txt",ios::out) ;

ofstream Out_x2("Out_x2.txt",ios::out) ;

ofstream Out_Net("Out_Net.txt",ios::out) ;

ofstream Out_Exp("Out_Exp.txt",ios::out) ;

ofstream W_End("W_End.txt",ios::out) ;

ofstream Q_End("Q_End.txt",ios::out) ;

ofstream Array("Array.txt",ios::out) ;

ofstream Out_x11("x1.txt",ios::out) ;

ofstream Out_x22("x2.txt",ios::out) ;

ofstream Result1("result1.txt",ios::out) ;

ofstream Out_x111("x11.txt",ios::out) ;

ofstream Out_x222("x22.txt",ios::out) ;

ofstream Result2("result2.txt",ios::out) ;


for( i=0 ; i<InMax ; i++)
{
for(j=0 ; j<InMax ; j++)
{
Out_x11<<Input_Net[0][i]<<',';
Out_x22<<Input_Net[1][j]<<"," ;
Result1<<3*NetWorkOut(i,j)<<"," ;
Out_x1<<Input_Net[0][i]<<"," ;

Array<<Input_Net[0][i]<<" " ;

Out_x2<<Input_Net[1][j]<<"," ;

Array<<Input_Net[1][j]<<" " ;

Out_Net<<3*NetWorkOut(i,j)<<"," ;

Array<<Y(Input_Net[0][i],Input_Net[1][j])<<" " ;

Out_Exp<<Y(Input_Net[0][i],Input_Net[1][j])<<"," ;

Array<<3*NetWorkOut(i,j)<<" " ;

Array<<'\n' ;
}
Out_x1<<'\n' ;
Out_x2<<'\n' ;
Out_x11<<'\n';
Out_x22<<'\n';
Result1<<'\n' ;

}
for(j=0 ; j<InMax ; j++)
{
for(i=0 ; i<InMax ; i++)
{
Out_x111<<Input_Net[0][i]<<',';
Out_x222<<Input_Net[1][j]<<"," ;
Result2<<3*NetWorkOut(i,j)<<"," ;
}
Out_x111<<'\n';
Out_x222<<'\n' ;
Result2<<'\n' ;
}


//把经过训练后的权系数和阀值保存到文件里
for(i=1 ; i<Layer_Max ; i++)
{
for(int j=0 ; j<Layer_number[i] ; j++)
{
for(int k=0 ; k<Layer_number[i-1]+1 ; k++)
{

W_End<<W[i][j][k]<<"," ;//保存权系数
}
}
}//end for

}//end

void main(void)
{
BP B;//生成一个BP类对象B
B.Train();//开始训练
B.BP_Print();//把结果打印出来
B.After_Train_Out();//把结果保存到文件

}//end

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值