递归的基本概念:程序调用自身的编程技巧称为递归,是函数自己调用自己.
一个函数在其定义中直接或间接调用自身的一种方法,它通常把一个大型的复杂的问题转化为一个与原问题相似的规模较小的问题来解决,可以极大的减少代码量.递归的能力在于用有限的语句来定义对象的无限集合.
使用递归要注意的有两点:
1)递归就是在过程或函数里面调用自身;
2)在使用递归时,必须有一个明确的递归结束条件,称为递归出口.
递归分为两个阶段:
1)递推:把复杂的问题的求解推到比原问题简单一些的问题的求解;
2)回归:当获得最简单的情况后,逐步返回,依次得到复杂的解.
利用递归可以解决很多问题:如背包问题,汉诺塔问题,...等.
斐波那契数列为:0,1,1,2,3,5...
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2);
int fib(int n)
{
if(0 == n)
return 0;
if(1 == n)
return 1;
if(n > 1)
return fib(n-1)+fib(n-2);
}
上面就是一个简单的递归调用了.由于递归引起一系列的函数调用,并且有可能会有一系列的重复计算,递归算法的执行效率相对较低.
迭代:利用变量的原值推算出变量的一个新值.如果递归是自己调用自己的话,迭代就是A不停的调用B.
递归中一定有迭代,但是迭代中不一定有递归,大部分可以相互转换.能用迭代的不用递归,递归调用函数,浪费空间,并且递归太深容易造成堆栈的溢出.
//这是递归
int funcA(int n)
{
if(n > 1)
return n+funcA(n-1);
else
return 1;
}
//这是迭代
int funcB(int n)
{
int i,s=0;
for(i=1;i<n;i++)
s+=i;
return s;
}
迭代是从一个已知条件一步步推出结果
递归是把问题不断分解为更小的问题,最后变成一个已知问题,从而求解。
就斐波那契数列来看,二者的思维方向是相反的
求斐波那契数列
1、递归法
这种方法的优点是简洁和容易理解,缺点是时间复杂度太大,随着n的增大,运算时间将会急剧增加。因此在很多场合这种方法是不可取的。
使用这种方法的关键代码是:
if(n == 1|| n== 2)
{
return 1;
}
else
{
return fib(n - 1) + fib(n - 2);
}
2、迭代法
这种方法相对于递归法来说在时间复杂度上减小了不少,但代码相对就要复杂些了。它的思想是这样的,假设开始时f0=1,f1=1,currentFib表示当前斐波那契数,则:
for(i = 1;i < n;i++)
{
currentFib = f0 + f1;
f0 = f1;
f1 = currentFib;
}