cefsharp获取网页完整内容

说明:由于很多文件无法获取到完整内容,再者具体文件内容在Filter里面进行了控制,而Fileter的内容依赖于IRequestHandler所以,外部只能操作Handler得到数据。 所以需要在,Filter和Hanlder类中,使用事件来传递具体的内容。代码如下。 Filter类如下:

public class TestImageFilter : IResponseFilter  
    {  
        public event Action<byte[]> NotifyData;  
        private int contentLength = 0;  
        private List<byte> dataAll = new List<byte>();  

        public void SetContentLength(int contentLength)  
        {  
            this.contentLength = contentLength;  
        }  

        public FilterStatus Filter(System.IO.Stream dataIn, out long dataInRead, System.IO.Stream dataOut, out long dataOutWritten)  
        {  
            try  
            {  
                if (dataIn == null)  
                {  
                    dataInRead = 0;  
                    dataOutWritten = 0;  

                    return FilterStatus.Done;  
                }  

                dataInRead = dataIn.Length;  
                dataOutWritten = Math.Min(dataInRead, dataOut.Length);  

                dataIn.CopyTo(dataOut);  
                dataIn.Seek(0, SeekOrigin.Begin);  
                byte[] bs = new byte[dataIn.Length];  
                dataIn.Read(bs, 0, bs.Length);  
                dataAll.AddRange(bs);  

                if (dataAll.Count == this.contentLength)  
                {  
                    // 通过这里进行通知  
                    NotifyData(dataAll.ToArray());  

                    return FilterStatus.Done;  
                }  
                else if (dataAll.Count < this.contentLength)  
                {  
                    dataInRead = dataIn.Length;  
                    dataOutWritten = dataIn.Length;  

                    return FilterStatus.NeedMoreData;  
                }  
                else  
                {  
                    return FilterStatus.Error;  
                }  
            }  
            catch (Exception ex)  
            {  
                dataInRead = dataIn.Length;  
                dataOutWritten = dataIn.Length;  

                return FilterStatus.Done;  
            }  
        }  

        public bool InitFilter()  
        {  
            return true;  
        }  
    }  

Filter类有了,那我们如何知道数据流的具体长度呢?这就需要在Handler的实现的其他方法里面寻找了。

bool IRequestHandler.OnResourceResponse(IWebBrowser browserControl, IBrowser browser, IFrame frame, IRequest request, IResponse response)  
        {  
            //NOTE: You cannot modify the response, only the request  
            // You can now access the headers  
            //var headers = response.ResponseHeaders;  
            try  
            {  
                var content_length = int.Parse(response.ResponseHeaders["Content-Length"]);  
                if (this.filter != null)  
                {  
                    this.filter.SetContentLength(content_length);  
                }  
            }  
            catch { }  
            return false;  
        }  

        private TestImageFilter filter = null;  
        public event Action<byte[]> NotifyData;  

        IResponseFilter IRequestHandler.GetResourceResponseFilter(IWebBrowser browserControl, IBrowser browser, IFrame frame, IRequest request, IResponse response)  
        {  
            var url = new Uri(request.Url);  
            if (url.AbsoluteUri.Contains("http://test.test.com/somehead?"))  
            {  
                this.filter = new TestImageFilter();  
                filter.NotifyData += filter_NotifyData;  

                return filter;  
            }  

            return null;  
        }  

        void filter_NotifyData(byte[] data)  
        {  
            if (NotifyData != null)  
            {  
                NotifyData(data);  
            }  
        }  

此方法位IRequestHandler的一部分实现,通过实现函数:IRequestHandler.GetResourceResponseFilter得到资源文件的长度,然后长度传入Filter,在Filter中控制从而得到整个数据的真正长度。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值