K8S资源指标获取工具:metrics-server
自定义指标的监控工具:prometheus,k8s-prometheus-adapter
prometheus:prometheus能够收集各种维度的资源指标,比如CPU利用率,网络连接的数量,网络报文的收发速率,包括进程的新建及回收速率等等,能够监控许许多多的指标,而这些指标K8S早期是不支持的,所以需要把prometheus能采集到的各种指标整合进k8s里,能让K8S根据这些指标来判断是否需要根据这些指标来进行pod的伸缩。
prometheus既作为监控系统来使用,也作为某些特殊的资源指标的提供者来使用。但是这些指标不是标准的K8S内建指标,称之为自定义指标,但是prometheus要想将监控采集到的数据作为指标来展示,则需要一个插件,这个插件叫k8s-prometheus-adapter,这些指标判断pod是否需要伸缩的基本标准,例如根据cpu的利用率、内存使用量去进行伸缩。
随着prometheus和k8s-prometheus-adapter的引入,新一代的k8s架构也就形成了。
K8S新一代架构
核心指标流水线:由kubelet、metrics-server以及由API server提供的api组成;CPU累积使用率、内存的实时使用率、pod的资源占用率及容器的磁盘占用率;
监控流水线:用于从系统收集各种指标数据并提供给终端用户、存储系统以及HPA,包含核心指标以及其他许多非核心指标。非核心指标本身不能被K8S所解析。所以需要k8s-prometheus-adapter将prometheus采集到的数据转化为k8s能理解的格式,为k8s所使用。
核心指标监控
之前使用的是heapster,但是1.12后就废弃了,之后使用的替代者是metrics-server;metrics-server是由用户开发的一个api server,用于服务资源指标,而不是服务pod,deploy的。metrics-server本身不是k8s的组成部分,是托管运行在k8s上的一个pod,那么如果想要用户在k8s上无缝的使用metrics-server提供的api服务,因此在新一代的架构中需要这样去组合它们。如图,使用一个聚合器去聚合k8s的api server与metrics-server,然后由群组/apis/metrics.k8s.io/v1beta1来获取。
之后如果用户还有其他的api server都可以整合进aggregator,由aggregator来提供服务,如图。
查看k8s默认的api-version,可以看到是没有metrics.k8s.io这个组的
当你部署好metrics-server后再查看api-versions就可以看到metrics.k8s.io这个组了。
部署metrics-server
进到kubernetes项目下的cluster下的addons,找到对应的项目下载下来
[root@master bcia]# mkdir metrics-server -p
[root@master bcia]# cd metrics-server/
[root@master metrics-server]# for file in auth-delegator.yaml auth-reader.yaml metrics-apiservice.yaml metrics-server-deployment.yaml metrics-server-service.yaml resource-reader.yaml ; do wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/metrics-server/$file;don