组合数学:插板法

  • 问题引出:把10个球放进三个盒子,每个箱子至少一个有多少种分法?

插板法

在n个元素的n-1个间隙间插入b个板子,这样就可以将元素分成b+1份了,每份至少1个元素。

所以这题答案为C(9,2)

  • 例二:把10个球放进三个盒子有多少种分法?

C(n+m-1,m-1)

这里盒子可以为空,我们可以预先在3个盒子里都放一个球,则问题转化为将13个球放进3个盒子里,每个盒子至少一个有多少中放法。答案为C(12,2)

序列统计

theme:给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。1≤N,L,R≤10^9,1≤T≤100

solution:问题可以转化为将n个球放进m=r-l+1个盒子里。用插板法转为C(n+m-1,m-1),再令n=1,2...求和为C(n+m,m)-1

//Lucas定理求(C(n+m,m)-1) %p
#include <bits/stdc++.h>
#define LL long long
using namespace std;
 
const int mod=1000003;
const int Max=1000005;
int t,n,l,r,ans;
int mul[Max],inv[Max];
 
inline void pre()
{
    mul[1]=1,mul[0]=1;
    for(int i=2;i<=mod;i++) mul[i]=((LL)i * (LL)mul[i-1]) % mod;
    inv[1]=1,inv[0]=1;
    for(int i=2;i<=mod;i++) inv[i] = (LL)(mod - mod/i) * (LL)inv[mod % i] % mod;
}
 
inline int C(int n,int m)
{
    if(m>n)return 0;
    return (LL)mul[n] * (LL)inv[mul[m]] % (LL)mod * inv[mul[n-m]] % mod;
}
 
inline int Lucas(int n,int m)
{
    if(!m) return 1;
    else return ((LL)C(n%mod,m%mod) % mod * (LL)Lucas(n/mod,m/mod) % mod) % mod;
}
 
int main()
{
    pre();
    cin>>t;
    while(t--)
    {
      cin>>n>>l>>r;
      ans = ((Lucas(r-l+1+n,r-l+1) - 1) % mod + mod) % mod;
      cout<<ans<<"\n";
    }
 
    return 0;   
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值