D. Make The Fence Great Again
theme:给定n个元素,每个元素有两个属性,高度ai与加高单位1的费用b[i],现要增加若干个元素的高度,使得任意相邻两元素的高度不同,每个元素可增高多次,问最少花费多少钱?1<=q<=3e5,1<=n<=3e5,sum(n)<=3e5,1<=ai<=bi<=1e9,答案<=1e18
solution:考虑用d[i][j]表示处理到元素i,将元素i增高j单位长度所需的最小费用,由于这题总的n可达3e5,所以第二维不能太大。分析题目可知每个元素最多增高两次就行,因为它为了与某一边不等则增高一次,若增高一次后与另一边相等了,则再增高一次即可。所以j取0,1,2。考虑转移方程,对于每个dp[i][j]它只与前一个dp[i-1][0],dp[i-1][1],dp[i-1][2],只要j与0/1/2的组合满足不等,则更新dp[i][j]为最小值。
注意q,n较大,别用memset初始化,T。==
#include<bits/stdc++.h>
using namespace std;
#define far(i,t,n) for(int i=t;i<n;++i)
#define pb(a) push_back(a)
#define lowbit(x) x&(-x)
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll inf=0x3f3f3f3f3f3f3f3f;
int mod=1e9+7;
const int maxn=300010;
ll a[maxn],b[maxn];
ll dp[maxn][3];
int main()
{
int q;
cin>>q;
while(q--)
{
int n;
scanf("%d",&n);
far(i,0,n)
far(j,0,3)
dp[i][j]=inf;
far(i,0,n)
scanf("%I64d%I64d",&a[i],&b[i]);
dp[0][0]=0;
dp[0][1]=b[0];
dp[0][2]=2*b[0];
far(i,1,n)
far(pre,0,3)
far(k,0,3)
if(a[i-1]+pre!=a[i]+k)
dp[i][k]=min(dp[i][k],dp[i-1][pre]+k*b[i]);
ll ans=min(dp[n-1][0],min(dp[n-1][1],dp[n-1][2]));
printf("%I64d\n",ans);
}
}