参数化方法:贝叶斯决策

参数化方法

假定数据D= { xt }t 服从某个分布xt ~ p (x)

参数化方法

  • 假定样本从某个已知模型中抽取,该模型由的一些参数确定,例如 p (x |q ) 服从N ( μ, σ2) ,统计量q = { μ, σ2}
  • 通过估计这些统计量,得出分布
  • 将估计出的分布p(x),p(ci),p(ci|x)用于决策

先验概率与后验概率

从原因到结果的论证称为“先验”; 从结果到原因的论证称为“先验”。

设A代表结果,B为发生A的原因,则

  • 先验概率:P(A)
  • 后验概率:P(B|A)

如何估计q ?

  • 极大似然估计MLE:不考虑q 的先验知识
  • 最大后验估计MAP:考虑q 的先验知识
  • 贝叶斯估计:将q 视为随机变量,求后验期望

样本服从伯努利分布

伯努利分布:伯努利分布是一个离散型机率分布,是二项分布,N=1时的特殊情况。也即01分布。

P(x=1)=p , P(x=0)=1-p , 即P (x) = p^{x}(1-p)^{1-x}

若x服从伯努利分布,则 E(x)=p , D(x)=p(1-p)

MLE估计

P (x) = p^{x}(1-p)^{1-x},N次实验的结果为  x^t  t=1,.....,N , \pounds (p| D) = log \prod_{t=1}^{N} p^{x^{t}}(1-p)^{1-x^{t}}

求得MLE:p= \sum_{t=1}^{N}x_{t}/ N

高斯/正态分布

P(x)=N(\mu ,\delta ^{2})=\frac{1}{\sqrt{2\Pi }\delta}e^{-\frac{(x-\mu)^{2}}{2\delta ^{2}}}

样本方差/总方差

注意样本方差:

总方差:

MLE估计

m=\frac{\sum_{t=1}^{N}x^t}{N}

s^2=\tfrac{\sum_{t=1}^{N}(x^t-m)^2}{N}

贝叶斯定理

P(c|x)=\frac{P(x,c)}{P(x)}=\frac{P(c) P(x|c)}{P(x)}

在贝叶斯决策中,x为样本,c为类别

若有多个属性,即x=[x1,x2...]^T,则要求各属性条件独立假设:

P(c|x)=\frac{P(c)}{P(x)} \prod_{d=1}^{d}P(x_{d}|c)

推得当给定样本x,要判断所属类别时,我们需要计算出x属于每个类别的概率,取最大值,即

P(c_{i}|x)=\frac{P(x,c_{i})}{P(x)}=\frac{P(c_{i}) P(x|c_{i})}{P(x)}=\frac{P(c_{i}) P(x|c_{i})}{ \sum_{k=1}^{k}P(x|c_{k})P(c_{k})}

  • 先验概率:样本空间中各类样本所占的比例。可通过各类样本出现的频率估计(大数定理)

Example 

  1.  明确这题是用给出的训练数据学习得到一个朴素贝叶斯分类器,来预测数据x=(2,s)^T的类标记。
  2. 要预测x=(2,s)^T的类标记,我们就得算出P(Y=-1 | x)与P(Y=1 | x),取最大值对应的Y作为结果,而P(Y|x)=\frac{P(Y)}{P(x)} \prod_{d=1}^{d}P(x_{d}|Y),分母一样,所以我们只用算出分子即可比较大小,即就是要计算P(Y)\prod_{d=1}^{d}P(x_{d} | Y)
  3. 计算得P(Y=-1)=6/15=2/5 , P(x(1)=2 | Y=-1)=2/6=1/3 , P(x(2)=s | Y=-1)=3/6=1/2 , 所以P(Y=-1)P(x(1)=2 | Y=-1)P(x(2)=s | Y=-1)=1/15
  4. 计算得P(Y=1)=3/5 , P(x(1)=2 | Y=1)=1/3 , P(x(2)=s | Y=1)=1/9 , 所以P(Y=1)P(x(1)=2 | Y=1)P(x(2)=s | Y=1)=1/45
  5. 比较得P(Y=-1)P(x(1)=2 | Y=-1)P(x(2)=s | Y=-1),所以预测数据x=(2,s)^T的类标记为Y^=-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值