最优合并问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
给定k 个排好序的序列s1 , s2,……, sk , 用2 路合并算法将这k 个序列合并成一个序列。假设所采用的2 路合并算法合并2 个长度分别为m和n的序列需要m + n -1次比较。试设计一个算法确定合并这个序列的最优合并顺序,使所需的总比较次数最少。
为了进行比较,还需要确定合并这个序列的最差合并顺序,使所需的总比较次数最多。
对于给定的k个待合并序列,计算最多比较次数和最少比较次数合并方案。
Input
输入数据的第一行有1 个正整数k(k≤1000),表示有k个待合并序列。接下来的1 行中,有k个正整数,表示k个待合并序列的长度。
Output
输出两个整数,中间用空格隔开,表示计算出的最多比较次数和最少比较次数。
Sample Input
4 5 12 11 2
Sample Output
78 52
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, i, k, M, m;
cin >>n;
int a[1005], b[1005];
for(i = 0; i < n; i++)
{
cin >> a[i];
b[i] = a[i];
}
sort(a, a+n);
sort(b, b+n);
m = 0;
M = 0;
for(i = n-1; i > 0; i--)
{
a[i-1] += a[i];
M += a[i-1]-1;
}
while(n > 1)
{
b[0] += b[1];
m += b[0] - 1;
n--;
for(i = 1; i < n; i++)
{
b[i] = b[i+1];
}
sort(b, b+n);
}
cout << M << " " << m <<endl;
}