自然语言nlp学习五

6-10 文本生成--介绍_哔哩哔哩_bilibili

在自然语言处理(NLP, Natural Language Processing)领域,“sequence”通常是指一个有序的数据集合,它由一系列元素按照特定顺序排列而成。这些元素可以是单词、字符、句子或其他文本单位。

  • 词序列(Word Sequence):这是最常见的形式,指的是文本中按顺序排列的单词列表,例如一个句子就是一个词序列。

  • 字符序列(Character Sequence):在深度学习和自然语言处理中的某些任务中,文本可以被视为一个字符序列,每个元素代表文本中的一个字符,这对于处理拼写纠错、生成式模型或基于字符级别的机器翻译等问题非常有用。

  • 标记序列(Token Sequence):经过分词或词干提取等预处理步骤后得到的词汇单元序列。

  • 语义序列(Semantic Sequence):在更抽象层面,序列也可以指代具有某种语义关系的事件或实体的序列。

  • 上下文相关的序列建模:在NLP中,序列经常用于上下文相关的任务,如情感分析、命名实体识别(NER)、句法分析、机器翻译和对话系统等,其中模型需要理解并利用前文信息来预测或生成后续内容。

例如,在序列标注任务中,模型会根据输入序列中的上下文信息为每个元素分配一个标签,如词性标注或实体识别;而在序列到序列(Sequence-to-Sequence, Seq2Seq)模型中,模型会将一个输入序列转换成另一个输出序列,这种技术广泛应用于翻译、摘要生成等任务中。

在自然语言处理(NLP)领域,Encoder-Decoder架构是一种深度学习模型结构,它主要用于序列到序列(Sequence-to-Sequence, Seq2Seq)的转换任务,其中输入和输出是两个不同长度的序列。这种架构最初由Sutskever等人在2014年的论文《Sequence to Sequence Learning with Neural Networks》中提出,并在机器翻译等任务上取得了显著成功。

Encoder部分: Encoder负责将输入序列编码为一个固定维度的向量或上下文向量(Context Vector)。这个过程通常涉及对输入序列进行嵌入(embedding),即将每个单词映射到高维空间的一个点,然后通过递归神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)或Transformer等序列模型捕获输入序列中的长期依赖关系和语义信息。

Decoder部分: Decoder则从Encoder生成的上下文向量开始,逐步解码出目标序列。在解码过程中,Decoder不仅会考虑当前时刻的信息,还会利用encoder提供的全局上下文信息以及前一时刻的解码状态来生成下一个时间步的输出。Decoder的输出通常是经过softmax函数处理后得到的概率分布,表示在给定上下文下预测下一个词的概率。

整体来说,Encoder-Decoder架构能够处理任意长度的输入和输出序列,非常适合应用于如机器翻译、文本摘要、对话系统、文档生成等各种需要进行序列转换的任务。在Transformer模型出现之后,基于自注意力机制的Encoder-Decoder结构更是极大地提升了序列建模的效果和效率,在现今的NLP领域被广泛应用。

Softmax函数是一种在多类别分类问题中广泛应用的激活函数,它将一个线性层(通常是神经网络的最后一层)的输出映射到概率分布空间。softmax函数的主要作用是确保输出的各个元素和为1,并且能够表示每个类别的相对概率。

数学表达上,给定一个向量 zzz,其包含 KKK 个分量 z1,z2,...,zKz_1, z_2, ..., z_Kz1​,z2​,...,zK​,对应的softmax函数定义为:

在深度学习模型中,尤其是多分类任务(如图像分类、文本分类等),softmax层通常被用作最后一层,用于从模型的 logits(未归一化的预测得分)中生成类别的后验概率分布。在训练过程中,模型会通过最小化交叉熵损失函数来优化这些概率与真实标签之间的差异。

mention

在自然语言处理(NLP)中,“mention”通常是指文本中对实体或概念的提及。例如,在一句话中,如果提到某个特定的人名、地名或其他专有名词,那么这个名称就是一个mention。在信息抽取和实体链接等任务中,识别和理解mention至关重要:

  1. 命名实体识别(NER, Named Entity Recognition):识别文本中提及的具体实体类型,如人名(Person)、组织机构名(Organization)、地点(Location)等。

  2. 共指消解(Coreference Resolution):确定文本中不同的mention是否指的是同一实体。例如,“他”和“那位科学家”可能是同一个实体在不同位置的mention。

  3. 实体链接(Entity Linking):将文本中的mention与预定义的知识库(如维基百科)中的实体进行关联,以确定mention所指代的真实世界对象。

  4. 社交媒体分析:在社交媒体内容中追踪用户提及的品牌、产品或事件等,这是品牌监测和舆情分析的重要组成部分。

通过有效识别和解析mention,NLP系统能够更好地理解和解析文本语义,从而支持更高级别的语言理解任务。

远程监督

在自然语言处理(NLP)领域,远程监督(Distant Supervision)是一种训练机器学习模型的方法,特别适用于信息抽取任务。这种方法利用大规模的结构化知识库(如维基百科、Freebase等)作为来源,来自动标注未标记文本数据。

具体而言,远程监督假设如果一个知识库中的事实与任何一条未标注文本中提及的内容相匹配,那么这条文本可以被视为对该事实的一种“弱监督”或间接标注。例如,知识库中记录了“比尔·盖茨是微软的创始人”,当我们在新闻文章中找到“比尔·盖茨创立了微软”这样的表述时,就认为这个句子是一个关于“人-组织关系”的正样本。

然而,这种方法也存在一定的噪声和不准确性,因为基于关键词匹配的关系可能并非完全准确,可能存在误标或者漏标的情况。尽管如此,远程监督仍然是大规模构建信息抽取系统的一个有效策略,尤其在资源有限无法进行大规模人工标注的情况下。通过结合其他技术如半监督学习、噪声标签修正等手段,可以进一步提高基于远程监督方法训练模型的效果。

在自然语言处理(NLP)领域中,“representation”指的是对自然语言数据(如单词、短语或整个句子)的数学表示。这种表示通常是一个向量,它可以捕捉词汇、语法和语义等信息,并且能够以机器学习算法可理解的形式表达这些复杂的语言结构。

例如:

  • 词嵌入(Word Embeddings):通过训练神经网络模型将每个单词转化为一个稠密向量,这样相似含义的词在向量空间中的距离会很近,比如Word2Vec、GloVe或BERT模型中的词嵌入。
  • 句向量(Sentence Embeddings):进一步将整个句子映射到一个固定维度的向量空间中,使得模型可以理解和比较句子之间的语义相似性或蕴含关系。
  • 上下文感知表示(Contextualized Representations):诸如BERT、ELMo或Transformer-XL等模型生成的表示方式,它们为文本中的每个单词赋予了基于其上下文环境的独特向量表示。

总的来说,在NLP中,“representation”是关键的技术概念,它有助于计算机程序理解和生成人类语言,并有效支持各种下游NLP任务,包括但不限于分类、问答、机器翻译和对话系统等。

backbone

在自然语言处理(NLP)领域,“backbone”通常指的是一个模型的主干结构或核心部分,它为整个模型提供基本特征提取和表示学习的能力。例如:

  1. 在预训练-微调范式中,像BERT、RoBERTa、ALBERT、GPT等这样的Transformer架构可以被视为模型的backbone。这些模型首先通过大规模无标注文本进行预训练,学习通用的语言表示,然后在特定任务上进行微调以达到最佳性能。

  2. 在更具体的模型结构中,backbone可能指代用于特征提取的部分,如在视觉问答(VQA)任务中,ResNet、EfficientNet等卷积神经网络用于从图像中提取特征作为backbone,随后将这些视觉特征与文本特征相结合来回答问题。

  3. 在序列标注或句法分析任务中,BiLSTM(双向长短时记忆网络)或Transformer层也可能被用作模型的backbone,它们负责捕获输入序列的上下文依赖并生成高级别的语义表示。

总的来说,NLP中的backbone是指模型中那些负责基础特征提取和表征学习的核心组件,它们对最终模型的表现起到关键支撑作用。

PLM

PLM是“Pretrained Language Model”(预训练语言模型)的缩写,这是一种在自然语言处理(NLP)领域广泛应用的技术。预训练语言模型首先通过无监督的方式,在大规模文本语料库上进行训练,学习通用的语言表示和模式。这种训练通常不依赖于特定任务的标注数据,而是旨在从大量未标记文本中捕捉到语言的深层次结构和规律。

完成预训练后, PLM可以被微调(fine-tuned)以适应各种下游NLP任务,如文本分类、命名实体识别、问答系统、机器翻译等。这一过程极大地提高了模型在这些任务上的性能,并且显著降低了对大量标注数据的需求。

一些知名的预训练语言模型包括:

  • BERT (Bidirectional Encoder Representations from Transformers)
  • GPT (Generative Pretrained Transformer) 及其后续版本GPT-2、GPT-3
  • RoBERTa (Robustly Optimized BERT Pretraining Approach)
  • XLNet
  • ELECTRA
  • T5 (Text-to-Text Transfer Transformer)
  • ALBERT (A Lite BERT)

这些模型不仅推动了NLP技术的进步,也在实际应用中取得了非常出色的效果。

在自然语言处理(NLP)领域,pipeline通常指的是一种将多个处理步骤串联起来形成流水线式的处理流程。每个步骤执行特定的NLP任务,并将处理结果传递给下一个步骤,直到完成整个文本分析过程。例如:

  1. 文本预处理Pipeline:

    • 文本清洗:去除无关字符、HTML标签、特殊符号等。
    • 分词:将连续的文本分割成单词或子词(对于非空格分隔语言如中文尤其重要)。
    • 停用词移除:去除常见且对语义贡献不大的词汇。
    • 词形还原/词干提取:将单词还原到其基本形式。
  2. NLP任务Pipeline:

    • 文本分类Pipeline可能包括:预处理 -> 词嵌入 -> 序列编码(如使用Transformer模型)-> 分类器。
    • 问答系统Pipeline可能包括:问题理解 -> 文档检索 -> 文本摘要 -> 答案抽取 -> 答案生成。

通过构建pipeline,可以将复杂的NLP任务分解为一系列相互独立又互相衔接的小任务,不仅有利于模块化开发和维护,还能提高系统的整体效率和效果。同时,这种方式也方便研究人员针对不同的环节进行优化改进。

在自然语言处理和信息检索领域中,"retrieval"(检索)通常指的是从大量数据源(如文档库、数据库或网页集合)中查找并返回与用户查询最相关的信息的过程。这个过程涉及到的关键技术和方法包括:

  1. 关键词检索:根据用户提供的关键词搜索相关信息,这是搜索引擎的基础功能。

  2. 布尔检索:使用布尔运算符(如AND、OR、NOT)来组合多个关键词以实现更精确的匹配。

  3. 向量空间模型:将文档和查询表示为向量,并通过计算它们之间的相似度来进行检索。

  4. 倒排索引:建立从词汇到包含该词汇文档列表的映射,使得检索时能快速定位包含特定词汇的文档。

  5. TF-IDF:一种用于衡量词项在文档集合中重要性的统计方法,常用于文本检索和信息过滤。

  6. 语义检索:考虑词汇和短语的语义关系,而非仅仅基于表面形式的匹配,比如利用词嵌入技术进行相似性检索。

  7. 问答系统中的检索:在知识库或文本资源中寻找能够直接回答问题的事实或段落。

  8. 深度学习检索:利用深度学习模型对文档和查询的嵌入表示进行匹配,提升检索精度。

总之,在现代NLP应用中,检索技术是至关重要的组成部分,对于提高信息获取效率、提供个性化推荐等方面都起着关键作用。

CLS

在自然语言处理(NLP)领域,CLS通常指的是“Classification Token”,即分类标记。

在基于Transformer架构的预训练模型如BERT、RoBERTa等中,输入序列的开头会插入一个特殊的标记"[CLS]"。这个标记的作用是在整个句子或文本片段的基础上生成一个单一的向量表示,用于后续的分类任务,例如文本分类、情感分析或者问答系统的答案选择等。

当模型对输入进行编码时,每个词或子词都会被映射为一个向量,并通过Transformer的自注意力机制得到上下文相关的向量表示。对于"[CLS]"标记,其对应的最终隐藏状态将汇集整个句子的信息,因此可以视为句子级别的表征,可以直接馈送到下游任务的分类器中进行预测。

在自然语言处理(NLP)和机器学习领域,"soft prompt"(软提示)通常是指一种用于预训练模型(如GPT-3、BERT等)的可微调参数化方式,以指导模型生成或理解特定类型的数据。与传统的“hard prompt”(硬提示)直接将固定文本输入模型不同,软提示通过优化一组额外的连续向量(称为提示向量)来引导模型行为。

在实际应用中,软提示可以被视为对模型输入的一种动态、灵活的前缀或者上下文描述,这些描述不是固定的词或短语,而是通过训练过程自动学习得到的。这种方式的优点在于它允许模型在无需更改权重的情况下适应不同的任务,只需调整这些附加的提示参数即可,从而有效利用了预训练模型的泛化能力和知识,并且在很多情况下能够减少对微调整个大模型的需求,提高资源效率。

KB 和 KG 在人工智能和数据科学领域分别代表:

KB (Knowledge Base) 知识库:

  • 是一种结构化的数据存储形式,用于存储大量的事实、规则、实体关系和其他类型的知识。
  • 它通常由元组(如三元组)组成,每个元组代表一个事实或关系,例如 (Subject, Predicate, Object),其中主体是关系的起点,谓词描述了关系类型,对象则是关系的终点。
  • 知识库可以用来支持问答系统、推理引擎、智能搜索等功能。

KG (Knowledge Graph) 知识图谱:

  • 可以看作是一种大型的知识库,它通过复杂的实体和概念网络来组织信息,强调实体之间的丰富连接和语义关联。
  • 知识图谱不仅包含简单的事实,还关注实体间的关系路径,从而揭示出更深层次的知识结构和含义。
  • 典型的例子包括谷歌的知识图谱、百度百科知识图谱等,它们在搜索引擎结果中提供丰富的上下文信息,并帮助用户快速获得精确和相关的信息。

总之,知识库(KB)是构建和管理知识的基本单元,而知识图谱(KG)则是一个大规模、多维度且高度互联的知识库。

8-1 大模型与法律应用Outline_哔哩哔哩_bilibili

  • 13
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值