
人工智能
WangR0120
这个作者很懒,什么都没留下…
展开
-
PyTorch学习之torchvision.models
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014380165/article/details/79119664 PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分...转载 2018-12-11 16:22:11 · 787 阅读 · 0 评论 -
pytorch学习之加载预训练模型
版权声明: https://blog.csdn.net/weixin_41278720/article/details/80759933 pytorch自发布以来,由于其便捷性,赢得了越来越多人的喜爱。Pytorch有很多方便易用的包,今天要谈的是torchvisi...转载 2018-12-11 16:20:20 · 1323 阅读 · 0 评论 -
Kaggle比赛模型融合方法
介绍集成模型是一种能在各种的机器学习任务上提高准确率的强有力技术。在这篇文章中,我会分享我在Kaggle比赛中的集成方法。在第一部分中,我们会讨论从提交文件中建立集成。主要包括:投票集成平均排名平均第二部分我们会讨论 通过 generalization/blending等方法来创建集成。我会...转载 2018-11-29 11:24:07 · 788 阅读 · 0 评论 -
UNet++
2018年6月的文章,DLMIA2018会议,作者单位Department of Biomedical Informatics, Arizona State University原作者在知乎上给出了对文章的思路总结 文章对Unet改进的点主要是skip connection。作者认为skip conn...转载 2018-11-29 11:16:52 · 6921 阅读 · 4 评论 -
Inception网络
版权声明:本文为博主原创文章,转载请注明出处,谢谢。 https://blog.csdn.net/wfei101/article/details/78309654 inception的设计思路:1. inception在增加特征表达能力的同时减少计算。2. 模型更精巧复杂了,增加BN和gra...转载 2018-11-29 11:09:51 · 288 阅读 · 0 评论 -
深度学习:十大拍案叫绝的卷积设计操作
卷积的十大拍案叫绝的操作一、卷积只能在同一组进行吗?– Group convolutionGroup convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把feature maps分给多个GPU分别进行处理,最...转载 2018-11-29 10:36:58 · 403 阅读 · 0 评论 -
CVPR常用资源整理汇总
【原文:http://blog.csdn.net/rodgeliao/article/details/7788177】 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 跟opencv相关的:http://opencv.org...转载 2018-11-29 10:34:18 · 366 阅读 · 0 评论 -
TensorFlow实战:Chapter-6(CNN-4-经典卷积神经网络(ResNet))
ResNetResNet简介相关内容论文分析问题引出解决办法实现residual mapping实验实验结果ResNet在TensorFlow上的实现ResNetResNet简介ResNet(Residual Neural Network)由微软研究院的何凯明大神等4人提出,ResNet通过使用Residual Unit成功训练152层神经网络,在ILSCRC2015年比赛中获得转载 2018-05-07 09:15:56 · 664 阅读 · 0 评论 -
TensorFlow实战:Chapter-5(CNN-3-经典卷积神经网络(GoogleNet))
GoogleNetGoogleNet 简介GoogleNet大家族GoogleNet的发展Inception V1Inception V2Inception V3Inception V4GoogleNet论文分析引言详解介绍相关工作动机和高层次考虑动机和高层次考虑详解GoogLeNet详解训练方法ILSVRC 2014 Classification Challen转载 2018-05-07 09:14:59 · 777 阅读 · 0 评论 -
TensorFlow实战:Chapter-4(CNN-2-经典卷积神经网络(AlexNet、VGGNet))
引言AlexNetAlexNet 简介AlexNet的特点AlexNet论文分析引言介绍数据集网络架构注解注解减少过拟合训练细节结果讨论参考文献略AlexNet在TensorFlow里面实现TensorFlow官方给出的AlexNet实现实现代码输出AlexNet应用在MNIST数据集上实现代码AlexNet应用在CIFAR10数据集上总结VGGNet转载 2018-05-07 09:13:07 · 1463 阅读 · 1 评论 -
2018年最值得关注的15大技术趋势
来源:36氪本文列举了2018年最值得关注的15大技术趋势,分别是区块链、狭义人工智能、地下交通系统、5G无线网络、比特币、增强现实、无人驾驶汽车、新太阳能技术、家庭虚拟助理、量子计算、外科手术机器人、飞行出租车、激光互联网、物联网、AR头戴设备。通常情况下,技术趋势是很难准确预测的,因为预测未来本身就极其困难。但是我们还是可以从2017 年的一些显著的数据指标来推测2018年科技行业的一些发展趋势转载 2018-02-27 11:03:15 · 386 阅读 · 0 评论 -
史上最完整的人工智能书单大全,学习AI的请收藏好
来源: 产业智能官概要:想自学人工智能,到底看什么书?现在关于AI的图书成千上万,那些才是最好的?想自学人工智能,到底看什么书?现在关于AI的图书成千上万,那些才是最好的?智能菌花了一周的时间,给大家挑选出42本最值得读的AI书籍,分为四类:简单科普类、深度科普类、技术学习类、机器人类和AI哲学类,希望对大家有帮助。未来智能实验室是世界第一个AI智商评测与趋势研究机构,由人工智能学家和科学院相关转载 2018-02-27 09:00:47 · 2731 阅读 · 0 评论 -
Petuum 新研究助力临床决策:使用深度学习预测出院用药
在过去一年中,我们看到了很多某种人工智能算法在某个医疗检测任务中「超越」人类医生的研究和报道,例如皮肤癌、肺炎诊断等。如何解读这些结果?他们是否真正抓住医疗实践中的痛点、解决医生和病人的实际需要? 这些算法原型如何落地部署于数据高度复杂、碎片化、异质性严重且隐含错误的真实环境中?这些问题常常在很多「刷榜」工作中回避了。事实上,从最近 IBM Watson 和美国顶级医疗中心 MD Anderson转载 2017-12-14 10:29:59 · 439 阅读 · 0 评论 -
结合生成式与判别式方法,Petuum新研究助力医疗诊断
在过去一年中,我们看到了很多某种人工智能算法在某个医疗检测任务中「超越」人类医生的研究和报道,例如皮肤癌、肺炎诊断等。如何解读这些结果?他们是否真正抓住医疗实践中的痛点、解决医生和病人的实际需要? 这些算法原型如何落地部署于数据高度复杂、碎片化、异质性严重且隐含错误的真实环境中?这些问题常常在很多「刷榜」工作中回避了。事实上,从最近 IBM Watson 和美国顶级医疗中心 MD Anderson转载 2017-12-14 10:28:19 · 368 阅读 · 0 评论 -
人工智能如何更好的辅助医生?Petuum研究自动生成医疗图像报告
在过去一年中,我们看到了很多某种人工智能算法在某个医疗检测任务中 「超越」人类医生的研究和报道,例如皮肤癌、肺炎诊断等。如何解读这些结果?他们是否真正抓住医疗实践中的痛点、解决医生和病人的实际需要? 这些算法原型如何落地部署于数据高度复杂、碎片化、异质性严重且隐含错误的真实环境中?这些问题常常在很多「刷榜」工作中回避了。事实上,从最近 IBM Watson 和美国顶级医疗中心 MD Anderson转载 2017-12-14 10:27:22 · 1527 阅读 · 0 评论 -
GMIS 2017 大会杨琼演讲:人工智能+医疗——噱头,还是未来?
全球机器智能峰会(GMIS 2017),是全球人工智能产业信息服务平台机器之心举办的首届大会,邀请了来自美国、欧洲、加拿大及国内的众多顶级专家参会演讲。本次大会共计 47 位嘉宾、5 个 Session、32 场演讲、4 场圆桌论坛、1 场人机大战,兼顾学界与产业、科技巨头与创业公司,以专业化、全球化的视角为人工智能从业者和爱好者奉上一场机器智能盛宴。5 月 28 日,机器之心主办的为期两天的全球机转载 2017-12-14 09:22:31 · 814 阅读 · 0 评论 -
深度学习网络结构汇总
这里写自定 版权声明:么么哒(*╹▽╹*) https://blog.csdn.net/weixin_41783077/article/details/83504718 </div> <link rel="stylesheet" href="https://csdnimg.cn/release/pho...转载 2019-01-28 15:21:07 · 525 阅读 · 0 评论