242 有效的字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t 互为字母异位词。
思路:数组其实就是一个简单哈希表,而且这道题目中字符串只有小写字符,那么就可以定义一个数组,来记录字符串s里字符出现的次数。
需要定义一个多大的数组呢,定一个数组叫做record,大小为26 就可以了,初始化为0,因为字符a到字符z的ASCII也是26个连续的数值。需要把字符映射到数组也就是哈希表的索引下标上,因为字符a到字符z的ASCII是26个连续的数值,所以字符a映射为下标0,相应的字符z映射为下标25。
- 在遍历字符串s的时候,只需要将 s[i] - ‘a’ 所在的元素做+1 操作即可,并不需要记住字符a的ASCII,只要求出一个相对数值就可以了。 这样就将字符串s中字符出现的次数,统计出来了。
- 那看一下如何检查字符串t中是否出现了这些字符,同样在遍历字符串t的时候,对t中出现的字符映射哈希表索引上的数值再做-1的操作。
那么最后检查一下,record数组如果有的元素不为零0,说明字符串s和t一定是谁多了字符或者谁少了字符,return false。最后如果record数组所有元素都为零0,说明字符串s和t是字母异位词,return true。
代码实现:
class Solution {
public:
bool isAnagram(string s, string t) {
int record[26] = {0};
for (int i = 0; i < s.size(); i++) {
// 并不需要记住字符a的ASCII,只要求出一个相对数值就可以了
record[s[i] - 'a']++;
}
for (int i = 0; i < t.size(); i++) {
record[t[i] - 'a']--;
}
for (int i = 0; i < 26; i++) {
if (record[i] != 0) {
// record数组如果有的元素不为零0,说明字符串s和t 一定是谁多了字符或者谁少了字符。
return false;
}
}
// record数组所有元素都为零0,说明字符串s和t是字母异位词
return true;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1),因为定义是的一个常量大小的辅助数组
349 两个数组的交集
给定两个数组 nums1 和 nums2 ,返回它们的交集 。输出结果中的每个元素一定是唯一 的。我们可以 不考虑输出结果的顺序 。
提示:
1 <= nums1.length, nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 1000
思路:1.使用unoredered_set作哈希表 2.使用数组作哈希表(由于nums1[i]和nums2[i]的大小限制)
1.unordered_set
使用两个unordered_map(使用unoreder_set是因为顺序并不重要,相比于set其查询和插入的时间复杂度都要低)
- result_set:用来保存交集
- nums_set:首先保存nums1的数据,再与nums2比较来判断是否有一样的数,有的话将结果保存在result_set中
代码实现:
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> result_set; // 存放结果,之所以用set是为了给结果集去重
unordered_set<int> nums_set(nums1.begin(), nums1.end());
for (int num : nums2) {
// 发现nums2的元素 在nums_set里又出现过
if (nums_set.find(num) != nums_set.end()) {
result_set.insert(num);
}
}
return vector<int>(result_set.begin(), result_set.end());
}
};
- 时间复杂度:O(m+n)
- 空间复杂度:O(n)
202 快乐数
编写一个算法来判断一个数 n 是不是快乐数。
快乐数」 定义为:
对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
- 如果这个过程 结果为 1,那么这个数就是快乐数。
- 如果 n 是 快乐数 就返回 true ;不是,则返回 false 。
思路:使用哈希表-set
我们可以先举几个例子。我们从7开始。则下一个数字是49(因为
7
2
=
49
7^2=49
72=49),然后下一个数字是 97(因为
4
2
+
9
2
=
97
4^2+9^2=97
42+92=97)。我们可以不断重复该的过程,直到我们得到 111。因为我们得到了 111,我们知道 777 是一个快乐数,函数应该返回 true。
再举一个例子,让我们从 116开始。通过反复通过平方和计算下一个数字,我们最终得到 58,再继续计算之后,我们又回到 58。由于我们回到了一个已经计算过的数字,可以知道有一个循环,因此不可能达到 111。所以对于 116,函数应该返回 false。
根据我们的探索,我们猜测会有以下三种可能。
1.最终会得到 111。
2.最终会进入循环。
3.值会越来越大,最后接近无穷大。(不可能,原因参见官方题解)
所以这道题目使用哈希法,来判断这个sum是否重复出现,如果重复了就是return false, 否则一直找到sum为1为止。
判断sum是否重复出现就可以使用unordered_set。
代码实现:
class Solution {
public:
// 取数值各个位上的单数之和
int getSum(int n) {
int sum = 0;
while (n) {
sum += (n % 10) * (n % 10);
n /= 10;
}
return sum;
}
bool isHappy(int n) {
unordered_set<int> set;
while(1) {
int sum = getSum(n);
if (sum == 1) {
return true;
}
// 如果这个sum曾经出现过,说明已经陷入了无限循环了,立刻return false
if (set.find(sum) != set.end()) {
return false;
} else {
set.insert(sum);
}
n = sum;
}
}
};
- 时间复杂度:O(logn)
- 空间复杂度:O(logn)
详细解析:
代码实现文章
1 两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
思路:使用哈希map
什么时候使用哈希法?当我们需要查询一个元素是否出现过,或者一个元素是否在集合里的时候,就要第一时间想到哈希法。
本题呢,我就需要一个集合来存放我们遍历过的元素,然后在遍历数组的时候去询问这个集合,某元素是否遍历过,也就是 是否出现在这个集合。那么我们就应该想到使用哈希法了。
因为本题,我们不仅要知道元素有没有遍历过,还要知道这个元素对应的下标,需要使用 key value结构来存放,key来存元素,value来存下标,那么使用map正合适。
这道题目中并不需要key有序,选择std::unordered_map 效率更高!
接下来需要明确两点:
- map用来做什么
- map中key和value分别表示什么
map目的用来存放我们访问过的元素,因为遍历数组的时候,需要记录我们之前遍历过哪些元素和对应的下标,这样才能找到与当前元素相匹配的(也就是相加等于target)
接下来是map中key和value分别表示什么。这道题 我们需要 给出一个元素,判断这个元素是否出现过,如果出现过,返回这个元素的下标。那么判断元素是否出现,这个元素就要作为key,所以数组中的元素作为key,有key对应的就是value,value用来存下标。所以 map中的存储结构为 {key:数据元素,value:数组元素对应的下标}。
在遍历数组的时候,只需要向map去查询是否有和目前遍历元素匹配的数值,如果有,就找到的匹配对,如果没有,就把目前遍历的元素放进map中,因为map存放的就是我们访问过的元素。
代码实现:
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
std::unordered_map <int,int> map;
for(int i = 0; i < nums.size(); i++) {
// 遍历当前元素,并在map中寻找是否有匹配的key
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second, i};
}
// 如果没找到匹配对,就把访问过的元素和下标加入到map中
map.insert(pair<int, int>(nums[i], i));
}
return {};
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(n)