【高阶篇】3.4 Redis之底层数据结构快表QuickList详解


redis高阶篇.jpg

0.前言

上个篇章回顾,我们上个章节,讲了redis的底层数据结构简单动态字符串(SDS)详解和压缩列表(ZipList)详解。了解到SDS是Redis字符串数据类型的底层数据结构,它具有可变长度、二进制安全、缓冲区预分配等特点。ZipList压缩列表是用来表示列表和哈希表的数据结构,它是一种紧凑的、压缩的数据结构,可以存储多个元素,并且支持在表头和表尾进行快速的插入和删除操作,可以有效地减少内存占用。

那么本章讲解Redis中的快表(QuickList),它是一种特殊的数据结构,用于存储一系列的连续节点,每个节点可以是一个整数或一个字节数组。快表是Redis中的底层数据结构之一,常用于存储有序集合(Sorted Set)等数据类型的底层实现。在本文中,我们将深入了解Redis中的快表,包括快表的结构和操作等。

1. 快表的结构

Redis中的快表(QuickList)是由多个节点(Node)组成的双向链表,每个节点都是一个ziplist(压缩列表)。快表中的每个节点包含了多个元素,每个元素可以是一个整数或一个字节数组。快表的结构如下图所示:

+---------+---------+---------+-------+
|  ziplist|  ziplist|  ziplist|  ...  |
+---------+---------+---------+-------+
|  prev   |  next   |  len    |  len  |
+---------+---------+---------+-------+
|  ...    |  ...    |  ...    |  ...  |
+---------+---------+---------+-------+

其中,ziplist是压缩列表,prev和next是指向前一个节点和后一个节点的指针,len是当前节点中元素的个数。
image.png

两端各有2个橙黄色的节点,是没有被压缩的。它们的数据指针zl指向真正的ziplist。中间的其它节点是被压缩过的,它们的数据指针zl指向被压缩后的ziplist结构,即一个quicklistLZF结构。
左侧头节点上的ziplist里有2项数据,右侧尾节点上的ziplist里有1项数据,中间其它节点上的ziplist里都有3项数据(包括压缩的节点内部)。这表示在表的两端执行过多次push和pop操作后的一个状态。
现在我们来大概计算一下quicklistNode结构中的count字段这16bit是否够用。
Redis 6.0 版本中的快表(QuickList)与 Redis 4.0 版本中的快表基本结构相同,都是由多个 quicklistNode 节点组成,其中每个节点都包含一个 ziplist 和一些元数据信息。快表中的元素按照从表头到表尾的顺序依次存储。

2. Redis 6.0 快表quicklist 基本结构

typedef struct quicklist {
    quicklistNode *head;
    quicklistNode *tail;
    unsigned long count;
    unsigned int len; // quicklist 节点数
    int fill : 16; // 压缩列表节点所能容纳的最大元素个数
    unsigned int compress : 16; // 压缩比例,0 表示不压缩,1 表示每两个节点压缩一个节点
    unsigned int bookmark_count; // 快照节点数量
    quicklistBookmark *bookmarks; // 快照节点数组
} quicklist;

在这里插入图片描述

2.1 成员变量

  • head 和 tail:分别指向快表的头部和尾部 quicklistNode 节点。

  • count:快表中元素的数量。

  • len:快表中 quicklistNode 节点的数量。

  • fill:ziplist 节点所能容纳的最大元素个数。

  • compress:压缩比例,0 表示不压缩,1 表示每两个节点压缩一个节点。

  • bookmark_count 和 bookmarks:快照节点数量和快照节点数组,用于支持快照功能。

2.1 主要操作

  • 在表头或表尾插入元素:根据情况选择头部或尾部的 ziplist,并在 ziplist 的头部或尾部插入元素。

  • 在表头或表尾删除元素:根据情况选择头部或尾部的 ziplist,并在 ziplist 的头部或尾部删除元素。

  • 按索引获取元素:首先根据索引定位到对应的 quicklistNode,然后在 quicklistNode 的 ziplist 中按照索引获取元素。

  • 范围查询元素:首先根据起始索引定位到对应的 quicklistNode,然后在 quicklistNode 的 ziplist 中按照范围查询元素。

  • 插入或删除元素时,如果某个 quicklistNode 的元素个数超过了指定的阈值,可以选择将该 quicklistNode 压缩为一个新的 quicklistNode,以减少内存占用。

  • 支持快照功能,可以在快表中的任意位置插入一个快照节点,用于快速恢复数据。

2.1 推导结果

我们已经知道,ziplist大小受到list-max-ziplist-size参数的限制。按照正值和负值有两种情况:

当这个参数取正值的时候,就是恰好表示一个quicklistNode结构中zl所指向的ziplist所包含的数据项的最大值。list-max-ziplist-size参数是由quicklist结构的fill字段来存储的,而fill字段是16bit,所以它所能表达的值能够用16bit来表示。
当这个参数取负值的时候,能够表示的ziplist最大长度是64 Kb。而ziplist中每一个数据项,最少需要2个字节来表示:1个字节的prevrawlen,1个字节的data(len字段和data合二为一;详见上一篇)。所以,ziplist中数据项的个数不会超过32 K,用16bit来表达足够了。

实际上,在目前的quicklist的实现中,ziplist的大小还会受到另外的限制,根本不会达到这里所分析的最大值。
在快表中,每个节点的大小是固定的。因此,当节点中的元素数量增加时,需要动态地添加新的节点来存储数据,这样可以保持快表的高效性。

3. 快表的操作

Redis中的快表支持以下常用的操作:

  • 快表的创建
quicklist *ql = quicklistNew();
  • 快表的添加
quicklistPushTail(ql, s, len);

其中,s是一个字节数组,len是字节数组的长度,表示在快表的尾部添加一个字节数组元素。

quicklistPushTail(ql, &value, sizeof(value));

其中,value是一个整数,表示在快表的尾部添加一个整数元素。

  • 快表的删除
quicklistDelIndex(ql, node, index);

其中,node是指向要删除的节点的指针,index是节点中要删除元素的下标。

  • 快表的遍历
for (quicklistNode *node = ql->head; node; node = node->next) {
    unsigned char *data = NULL;
    unsigned int sz;
    long long val;
    int ret = quicklistGet(node, &data, &sz, &val);
    if (ret == -1) {
        printf("data: %s, size: %d\n", data, sz);
    } else {
        printf("value: %lld\n", val);
    }
}

其中,node是指向当前节点的指针,data是节点中的字节数组元素,sz是字节数组元素的长度,val是节点中的整数元素。

  • 快表的长度
unsigned long quicklistCount(const quicklist *ql);

以上是常用的快表操作,还有其他的操作可以参考Redis源代码中的quicklist.h和quicklist.c文件。

3. 快表的优缺点

3.1 优点:

  • 快表的节点大小固定,可以有效地避免内存碎片的发生。
  • 快表支持动态增加和删除节点,可以随着数据的增长而自动扩容或缩容,不需要预先分配空间。
  • 快表的节点采用ziplist的紧凑存储方式,使得节点访问和遍历的效率较高。同时,快表支持从头和尾部两个方向同时遍历节点。

3.2 缺点:

  • 快表的节点大小固定,如果节点中的元素数量较少,会造成一定的空间浪费。
  • 快表中的元素只能是整数或字节数组,不支持其他数据类型的存储。
  • 快表的插入和删除操作的效率较低,因为在插入或删除元素时,需要移动后面的元素,可能会导致大量的内存复制操作。如果需要频繁进行插入和删除操作,建议使用其他数据结构,例如链表。
  • 当快表中的元素数量较大时,遍历整个快表的效率也可能较低,因为快表是由多个节点组成的链表,需要依次遍历每个节点才能访问所有元素。
    #4. 总结
    快表适合存储一些数量较少但有序的元素,例如有序集合(Sorted Set)中的成员和分值。在实际应用中,需要根据具体的业务场景选择合适的底层数据结构。

5. Redis从入门到精通系列文章

《Redis从入门到精通【高阶篇】之底层数据结构简单动态字符串(SDS)详解》
《Redis从入门到精通【高阶篇】之底层数据结构压缩列表(ZipList)详解》
《Redis从入门到精通【进阶篇】之数据类型Stream详解和使用示例》

在这里插入图片描述

  • 19
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 15
    评论
Redis是一个开源的内存数据库,它使用了多种数据结构来存储不同类型的数据。下面是几种常见的Redis底层数据结构详解: 1. 字符串(String):字符串是Redis中最基本的数据结构。它可以存储任意类型的数据,包括数字、文本等。字符串在Redis中以字节数组的形式存储,可以通过键访问和修改。 2. 列(List):列是一个有序的字符串集合,可以在列的两端进行插入、删除和获取操作。Redis使用双向链来实现列数据结构,它支持速插入和删除操作。 3. 哈希(Hash):哈希是一种键值对的集合。在Redis中,哈希可以存储多个字段和对应的值,类似于关联数组或者字典。哈希在内部使用哈希来实现,可以速查找和修改字段值。 4. 集合(Set):集合是一组唯一且无序的字符串集合。Redis使用哈希来实现集合数据结构,它支持添加、删除和判断元素是否存在等操作。 5. 有序集合(Sorted Set):有序集合是一组唯一且有序的字符串集合。在Redis中,每个元素都会关联一个分数,通过分数可以对元素进行排序。有序集合的实现使用了跳跃和哈希两种数据结构,它支持添加、删除、修改和范围查询等操作。 这些数据结构底层实现都是高效的,并且支持丰富的操作。Redis数据结构灵活性较高,能够满足不同类型的数据存储需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰点.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值