
gis
文章平均质量分 58
王树民
大JAVA
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
地图瓦片编号与经纬度的换算关系
地图瓦片编号与经纬度的换算关系芒果香蕉_关注0.432021.02.23 10:49:57字数 563阅读 611前言地图瓦片编号与与经纬度坐标之间的转换与简单理解。相关资料看了好多次,每次看完就忘,这里做一个简单的学习笔记。Web墨卡托投影通常提到Web墨卡托投影,我最先想到的关键词是: “3857”、“谷歌地图”。再往深了想就是“正轴等角圆柱投影”、“越靠近两极变形越大”等特性。以前对“越靠近两极变形越大”的理解是:越靠近两极,地图横向拉伸越严重。今天查资料时突然意识到一点:原创 2021-06-10 09:21:01 · 3609 阅读 · 3 评论 -
gdal栅格切图
package gdal.cutmap.raster;import org.gdal.gdal.Band;import org.gdal.gdal.Dataset;import org.gdal.gdal.Driver;import org.gdal.gdal.gdal;import org.gdal.gdalconst.gdalconst;import org.gdal.gdalconst.gdalconstConstants;import org.geotools.geometry.j.原创 2021-06-07 18:22:15 · 1262 阅读 · 0 评论 -
地图瓦片编号与经纬度的换算关系
芒果香蕉_关注0.432021.02.23 10:49:57字数 563阅读 611前言地图瓦片编号与与经纬度坐标之间的转换与简单理解。相关资料看了好多次,每次看完就忘,这里做一个简单的学习笔记。Web墨卡托投影通常提到Web墨卡托投影,我最先想到的关键词是: “3857”、“谷歌地图”。再往深了想就是“正轴等角圆柱投影”、“越靠近两极变形越大”等特性。以前对“越靠近两极变形越大”的理解是:越靠近两极,地图横向拉伸越严重。今天查资料时突然意识到一点:越靠近两级纵向拉伸同样越严重...原创 2021-06-07 17:09:26 · 2561 阅读 · 0 评论 -
Windows下gdal 的 Java 环境配置
假设你已经安装好java jdk,并配置好环境变量。参考:http://trac.osgeo.org/gdal/wiki/GdalOgrInJavahttp://trac.osgeo.org/gdal/wiki/GdalOgrInJavaBuildInstructions(编译java版gdal)这里使用的是编译好的gdal,下载地址:http://www.gisinternals.com/release.php选择win32/x64版的zip,解压到相关目录下。配置java中的jre li原创 2021-06-07 16:01:51 · 1483 阅读 · 0 评论 -
WMTS(Web Map Tile Service)
一、WMTS(Web Map Tile Service)为了更快的将地图数据在前端显示,可以为一些数据不会变更或变动较小的服务创建地图缓存(Cache)。WMTS是一种采用图像金字塔的方式将地图服务按照预先设置的某种切图策略创建的地图缓存服务。1、地图缓存:地图缓存是一个包含了不同比例尺下整个地图范围的地图切片目录,是预先按照显示切图等级、比例尺、切图原点、DPI、图片大小等参数创建的静态图片,用于提高地图服务的响应速度。数据格式通常采用PNG或JPG。前端向地图服务器请求时可以直接根据切图原创 2021-06-04 13:42:06 · 3341 阅读 · 0 评论 -
比例尺与分辨率
比例尺与分辨率 发送反馈 在地图中,比例尺与分辨率是两个常用的术语,比例尺与分辨率的大小决定了地图要素对实际地物描述的详细程度。在 GIS 领域所提到的地图分辨率(Resolution),也称地面分辨率(Ground Resolution)或空间分辨率(Spatial Resolution),表示屏幕上一个像素(pixel)所代表的实际地面距离(米)。地图比例尺(scale)是指地图上距离与地面实际距离的比例。在计算地图比例尺的时候,通常用到地面分辨率和屏幕...原创 2021-05-26 19:37:56 · 1112 阅读 · 0 评论 -
分辨率和像素是什么关系?
分辨率和像素是什么关系?像素即px,是画面中最小的点(单位色块)。分辨率=画面水平方向的像素值 * 画面垂直方向的像素值。分辨率可以分为两方面:屏幕分辨率和图像分辨率。1. 屏幕分辨率:例如,屏幕分辨率是1024×768,也就是说设备屏幕的水平方向上有1024个像素点,垂直方向上有768个像素点。像素的大小是没有固定长度的,不同设备上一个单位像素色块的大小是不一样的。例如,尺寸面积大小相同的两块屏幕,分辨率大小可以是不一样的,分辨率高的屏幕上面像素点(色块)就多,所以屏幕内可以展示的画面就原创 2021-03-19 17:34:27 · 10163 阅读 · 0 评论 -
基于GDAL的影像切图工具
1 功能需求 对一副3857坐标系的卫星影像按照谷歌TMS进行切片,并将切片文件存储在符合MBTiles规范的SQLite数据库中2 依赖库GDAL ,GeoTools3 环境搭建 由于个人对Java语言比较熟悉,因此使用Java语言开发环境,Java工程复用原有的SpringBoot工程,然后在pom文件中添加对GeoTools库的依赖即可实现GeoTools的引入。3.1 Windows环境下搭建GDAL Java Binding开发环境 GDAL是当...原创 2021-03-10 17:49:56 · 2768 阅读 · 3 评论 -
Geohash精度和原理
转自:https://blog.csdn.net/u011497262/article/details/81210634 https://www.jianshu.com/p/1ecf03293b9ageohash基本原理是将地球理解为一个二维平面,将平面递归分解成更小的子块,每个子块在一定经纬度范围内拥有相同的编码,这种方式简单粗暴,可以满足对小规模的数据进行经纬度的检索目录:经纬度常识 认识geohash geohash算法 geohash原理 对照表经纬度常识经...原创 2020-06-10 15:07:51 · 4485 阅读 · 0 评论 -
区域内查找
读书笔记-HBase in Action-第三部分应用-(2)GIS系统本章介绍用HBase存储、高效查询地理位置信息。Geohash空间索引考虑LBS应用中常见的两个问题:1)查找离某地近期的k个地点。2)查找某区域内地点。假设要用HBase实现高效查找,首先要考虑的是空间局部性(Spatial Locality),即位置上相近的点得物理存储在一起。最简单的地理位置数据由两个维度组成:经度X和纬度Y。那么相相应最简单的Rowkey也能够由X和Y组成。Rowkey的有序性决定了数据首先依转载 2020-06-02 10:22:45 · 693 阅读 · 0 评论 -
通过GeoHash核心原理来分析hbase rowkey设计
博客分类: hadoop hadoop hbase hbase 注:本文是结合hbase实战以及网上的博文概述了一下,以作后期使用时的备份。 参考资料:http://www.cnblogs.com/LBSer/p/3310455.html 百度地图,美团,大众点评等等等等,都会有查找附近的功能,如何实现呢?计算所在位置P与北京所有餐馆的距离,然后返回距离<=1000米的餐馆。餐馆何其多啊,这样计算不得了,既然知道经纬度了,那它应该知道自己在西城区,那应该计算所在位...转载 2020-06-02 10:18:46 · 537 阅读 · 0 评论 -
GeoHash
1、geohash及其性质一种空间索引技术。(1)将二维的经纬度位置数据转换为一维的字符串(基本上hash族的算法都是这样);其优点在于hash编码后的字符串,可以方便查找和索引,从而减少相似计算的计算量(不需要再去两两计算距离,而是缩小了比较的范围,减少了计算量、提高了效率);(2)字符串越长,表示的范围越小越精确;字符串长度越小,表示的范围越大越宽泛;(3)字符串越相似表示距离越相近;这样可以利用字符串的前缀匹配来查询附近的POI信息;2、应用将POI位置信息进行GeoH原创 2020-06-02 09:44:01 · 697 阅读 · 0 评论