自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(192)
  • 资源 (179)
  • 收藏
  • 关注

原创 【Python/Pytorch - 网络模型】-- 手把手搭建3D ResUNet模型

本文介绍了3D ResUNet模型及其PyTorch实现。该模型基于U-Net架构,结合3D卷积模块和残差跳跃连接,适用于MRI等3D医学图像分割任务。模型采用编码器-解码器结构,通过多尺度下采样处理各向异性3D医学图像,并使用三线性上采样保持几何精度。实验表明批归一化对MRI定量任务影响较大,建议根据实际情况调整。代码提供了卷积块、上采样块等核心组件,支持残差连接以解决深度网络梯度问题。

2026-01-25 12:01:48 369

原创 【Python/Pytorch】-- 创建 tiny-cuda-nn 环境

摘要:本文介绍了在服务器上创建tiny-cuda-nn环境的完整流程。首先检查CUDA版本(11.8)和显卡型号(4090Ti),创建Python 3.9的conda环境。随后安装匹配的PyTorch版本(2.0.1+cu118),提供直接安装和国内镜像两种方法。接着进入tiny-cuda-nn项目目录完成安装,并解决了medutils、yaml等依赖包安装失败的问题,通过安装替代包(medutils-mri、yaml-1-3等)和调整h5py版本来完成环境配置。整个流程包含详细的命令行操作和问题解决方法。

2026-01-03 21:04:59 413

原创 【大语言模型】-- 一些概念

摘要: 文章探讨了AI应用的关键概念与行业实践。以Token为基础的计价方式采用双向计费,成本受模型和分词方式影响。各行业案例显示AI已在工业(参数优化)、政务(智能服务)、医疗(全链条诊疗)等领域落地,服装制造和工业领域更实现全链路协同。模型选择需权衡任务类型、性能指标及合规要求,需注意AI存在幻觉问题等固有缺陷。交互趋向多模态和具身智能,而成本包含显性API费用与隐性纠错支出(年成本或达674亿美元)。

2025-11-13 15:00:00 37

原创 【大语言模型】-- Agent

摘要: 本文探讨了人工智能中的智能体(Agent)范式,强调其通过感知、决策和行动的循环实现与环境交互。智能体核心包括状态感知、策略决策、规划推理和工具使用,示例代码展示了决策循环和规划器实现。文章指出当前挑战:可靠性(避免错误行动)、效率(计算成本)、评估(开放世界能力)和安全性(价值观对齐)。这些问题是未来Agent发展的关键方向。(148字)

2025-11-13 14:00:00 591

原创 【大语言模型】-- RAG

摘要: RAG(检索增强生成)通过结合大型语言模型(LLM)与外部知识库,解决了模型静态知识、幻觉和领域局限问题。其架构分为三部分: 检索器:使用密集向量(如FAISS)、稀疏检索(如BM25)或混合方法动态查找相关文档; 增强模块:通过重排序和上下文压缩优化检索结果,减少噪声; 生成器:基于Prompt工程控制LLM生成答案,确保依赖上下文且可信。示例代码展示了LangChain实现RAG的流程,包括文档加载、向量检索及生成控制。该方案显著提升了AI回答的准确性和实时性。

2025-11-13 12:00:00 738

原创 【大语言模型】-- Function Calling函数调用

摘要: Function Calling(函数调用)通过将大语言模型与外部工具结合,解决其三大局限:事实可靠性(实时调用API获取动态数据)、可解释性(结构化JSON调用链可审计)及资源限制(复杂计算卸载到外部服务)。其工作流程包括:1)用户提问;2)模型生成调用方案;3)执行外部函数;4)模型整合结果返回自然语言答案。示例展示了天气查询场景的实现步骤:定义工具函数、注册JSON描述、两阶段调用循环(模型决策→执行→结果回传)。该方法显著降低幻觉率,提升可控性,并减少算力消耗。

2025-11-12 12:00:00 1197

原创 【大语言模型】-- Prompt Engineering 提示工程

提示工程:优化自然语言输入以提升大模型表现 提示工程是通过设计优化输入提示词(Prompt),在不改变模型参数的情况下引导大模型输出期望结果的技术。它能显著提升模型在零样本和少样本任务中的表现,降低微调成本。 常见方法包括: 零样本提示:直接指令激活模型能力(如翻译、情感分析); 少样本提示:提供示例引导模型模仿(如颜色对应、拼音转换); 思维链:显式生成推理步骤以减少误差(如数学计算); 自动提示工程:模型自主生成并筛选最优提示; 角色扮演:通过身份设定激活特定领域知识(如营养师、物理老师)。 这些技巧通

2025-11-11 12:00:00 98

原创 【大语言模型】-- 私有化部署

本文系统介绍了大模型私有化部署的分类和实践方法:1)按交付形态分为一体机、纯软件和私有化SaaS;2)按参数规模划分从轻量级到超大型,并说明相应硬件需求;3)按模态类型包括语言、视觉、语音和多模态模型。实践部分演示了使用LM Studio工具进行本地部署的完整流程,从下载、模型选择到实际对话应用,为开发者提供了便捷的私有化部署方案。文章为不同场景下的大模型私有化部署提供了清晰的分类指导和实用参考。

2025-11-10 12:00:00 537

原创 【大语言模型】-- Fine-tuning 微调

微调技术解析:从预训练到任务适配 微调(Fine-tuning)是在预训练模型基础上针对特定任务进行优化的关键技术。预训练使模型在大规模通用数据(如BERT处理文本、ResNet处理图像)中学习基础特征,而微调则通过小规模任务数据(如医学影像分类、法律文本分析)使模型适应新场景。需微调的情况包括:任务目标变更、数据分布偏移、引入领域知识或控制输出格式。常用方法包括Prompt模板适配、LoRA低秩矩阵优化、动态调整的AdaLoRA/DoRA以及全参数微调。这些技术平衡计算效率与模型性能,实现精准任务迁移。

2025-11-09 12:00:00 787

原创 【大语言模型】-- OpenAI定义的五个AGI发展阶段

OpenAI提出五级AGI发展框架:从对话机器人到超级AI系统。当前已实现L1聊天机器人(如ChatGPT),L2推理者(博士级问题解决)接近突破,L3智能体(自主行动)处于商业化过渡期。更高阶段的L4创新者(创造性突破)和L5组织者(战略管理)仍待发展。该框架系统描绘了从基础对话到完全体AGI的演进路径,为AI发展提供清晰路线图。

2025-11-08 12:00:00 760

原创 【Python】-- 趣味代码 - Piano游戏

Python钢琴模拟游戏实现 该程序实现了一个基于Python的简易钢琴模拟器,具有以下核心功能: 键盘映射系统: 通过keyDict字典建立21个键盘按键与音阶的映射关系(三个八度音域) 包含特殊键ESC退出和1键最高音功能 音频播放机制: 使用pyaudio异步播放WAV音频文件 采用多线程技术实现音符的并发演奏 音频资源按十二平均律命名存储在./audios/目录 视觉反馈系统: 加载21张琴键状态图片实现按键动画 背景图与按键图叠加渲染 100Hz事件轮询保证响应速度 资源管理: 文件存在性检查防止

2025-11-06 20:00:00 97

原创 【Python】-- 趣味代码 - 秒表小游戏

摘要: 这是一个基于Python的秒表小游戏,使用simplegui库实现。核心功能包括: 计时引擎:通过定时器每100ms更新秒表,支持60进制时间显示(分:秒.毫秒)。 游戏机制:玩家需在秒表停止时恰好落在整5秒(如5.0s、10.0s)上得分,通过浮点取模判定胜负。 交互控制:提供“开始/停止/重置”按钮,停止时触发胜负判定,重置则清零时间和比分。 界面展示:实时渲染时间及当前胜率(得分/总尝试次数)。代码可直接在CodeSkulptor在线环境中运行。 (98字)

2025-11-06 12:00:00 43

原创 【Python】-- 趣味代码 - 剪刀石头布·蜥蜴·史波克游戏

这篇文章介绍了“剪刀石头布·蜥蜴·史波克”游戏的玩法规则和实现代码。游戏将5种手势排成环形,按顺时针方向判断胜负:相差1-2格为赢,逆时针方向相差1-2格为输,相同则为平局。作者提供了可直接运行的Python程序代码,支持玩家与电脑对战,并实时显示胜负结果和得分统计。代码可通过指定网址运行,包含异常处理功能,输入-1可退出游戏。该程序完整实现了扩展版石头剪刀布游戏的核心逻辑和交互功能。

2025-11-05 12:00:00 50

原创 【Python】-- 趣味代码 - RiceRocks(小行星射击游戏)

小行星射击游戏RiceRocks分析 本游戏是一个经典的小行星射击游戏,包含完整游戏循环和碰撞系统。核心逻辑包括: 资源层管理图片、音效等素材 游戏对象实现飞船、导弹、岩石和爆炸效果 碰撞检测采用组碰撞机制(导弹vs岩石、飞船vs岩石) 岩石生成器每秒随机产生新小行星 游戏循环处理背景渲染、对象更新和碰撞判定 通过键盘控制飞船移动(方向键/WASD)和射击(空格键) 游戏特色: 包含完整的生命周期管理(爆炸动画、导弹消失) 背景音乐和音效系统 分数统计和生命值机制 一键重启功能 代码结构清晰,采用面向对象设

2025-11-04 12:00:00 48

原创 【Python】-- 趣味代码 - 2048 游戏

这篇文章解析了2048游戏的Python实现,重点介绍了其核心机制和代码结构。游戏采用“数据-表现-控制”三分离设计,核心逻辑包括: 矩阵旋转复用 - 通过90°旋转实现四个方向的滑动复用 压缩合并算法 - 采用"压缩-合并-再压缩"三步处理数字块 状态机控制 - 使用Init/Game/Gameover三种状态管理游戏流程 键盘输入处理 - 映射WASD键控制方向 游戏结束检测 - 检查四个方向是否可移动 代码结构清晰,展示了命令行游戏开发的典型模式,但依赖Windows特定模块(ms

2025-11-03 12:00:00 48

原创 【Python】-- 趣味代码 - 乒乓球游戏

摘要: 本文介绍了一个基于Python的经典乒乓球游戏实现。游戏支持双人对战,左右挡板分别由W/S键和上下箭头控制,球速会随回合增加而加快(加速度1.1倍)。代码框架包含球的移动、挡板限位、碰撞检测(墙壁/挡板)和得分系统。修复了递归死循环、得分卡顿等Bug,并优化了变量命名。通过CodeSkulptor在线平台运行,复制代码即可体验。核心逻辑采用物理模拟和事件驱动,实现了完整的Pong游戏机制。

2025-11-02 12:00:00 73

原创 【Python】-- 趣味代码 - “记忆翻牌”小游戏

“记忆翻牌”小游戏设计与实现 该游戏通过4×4牌阵挑战玩家记忆8对数字,需要最少翻牌次数完成配对。采用三状态机逻辑控制游戏流程:首次翻牌记录位置(state 0→1),二次翻牌判断配对(state 1→2),无论配对成功与否均重置为state 1并累计次数。Python实现包含三个核心模块:new_game()初始化洗牌和状态,mouseclick()处理点击逻辑,draw()渲染牌面视觉效果。全局变量管理游戏状态和计数,玩家可通过在线代码平台快速体验。代码简洁高效,完整实现了记忆匹配的核心玩法与状态流转机

2025-11-01 12:00:00 584

原创 【Python】-- 趣味代码 - 猜数字游戏

摘要:本文介绍了一个基于Python的猜数字游戏实现方案。游戏提供0-100和0-1000两个难度范围,系统会根据所选范围随机生成秘密数字并计算允许的猜测次数(使用对数函数计算)。用户通过图形界面输入猜测,系统会实时反馈"Higher"、"Lower"或"Correct"提示。游戏包含全局状态管理、输入验证和自动重开功能,采用simplegui库构建交互界面。代码可直接在CodeSkulptor在线平台运行,默认从0-100范围开始游戏,具有完整的

2025-10-31 21:51:19 151

原创 【Python】-- 深度学习项目 - 贝叶斯优化算法

贝叶斯优化算法摘要 贝叶斯优化是一种高效的全局优化方法,特别适用于评估成本高的目标函数。其核心是通过高斯过程构建概率模型,结合采集函数(如EI、UCB)平衡探索与开发,在有限评估次数内寻找最优解。算法流程包括:初始化采样、迭代更新模型和选择下一个评估点。以参数优化为例,贝叶斯优化会基于现有数据建立损失函数的三维概率曲面,用EI函数预测最有潜力的参数组合,通过实验反馈逐步逼近最优解。该方法在机器学习超参数调优等领域有广泛应用,能以较少实验次数获得理想结果。

2025-09-11 12:00:00 1032

原创 【论文阅读】-- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

摘要:Google Brain团队在ICML 2019提出EfficientNet,通过复合缩放方法(Compound Scaling)系统平衡网络深度、宽度和分辨率(d=α^φ, w=β^φ, r=γ^φ),约束α·β²·γ²≈2以保证计算量线性增长。基于神经架构搜索的EfficientNet-B0至B7系列在ImageNet上实现SOTA(B7达84.4% top-1),参数量减少9.6倍且迁移学习表现优异。实验表明复合缩放比单一维度缩放更有效聚焦关键特征。代码已开源,其平衡精度与效率的设计思想可拓展至

2025-09-10 22:19:56 781

原创 【Python/Pytorch】-- 贝叶斯定理

本文介绍了贝叶斯定理及其在MRI重建中的应用。贝叶斯定理公式P(A|B)=P(B|A)*P(A)/P(B)描述了条件概率关系,在连续变量中表现为P(x|y)=P(y|x)*P(x)/P(y)。其中P(x|y)是后验概率,P(y|x)是似然,P(x)是先验知识。在MRI重建中,贝叶斯方法通过结合观测数据和先验知识(如图像的平滑性、低秩性等)来优化图像重建过程,提高重建质量。文中包含多张示意图说明MRI重建中的贝叶斯方法应用。

2025-09-10 22:09:27 281

原创 【Matlab】-- 机器学习项目 - 基于XGBoost算法的数据回归预测

本文介绍了基于XGBoost算法的数据回归预测方法。XGBoost通过逐步构建多个决策树来纠正残差,最终加权求和得到强学习器。文章详细解读了Matlab实现代码的8个关键步骤:环境清理、数据读取、随机拆分、归一化处理、模型训练、预测反归一化、误差计算和可视化分析。实验结果显示,该方法能有效进行数据回归预测,并提供了RMSE、R²等评估指标的可视化图表。配套的Matlab源码可供读者下载使用,便于实际应用和调整。

2025-09-10 21:58:03 1102

原创 【Python】-- 机器学习项目 - 基于朴素贝叶斯算法的新闻分类

本文介绍了朴素贝叶斯算法原理及其在新闻分类中的应用。朴素贝叶斯通过假设特征独立,计算P(x|c)进行类别预测。基于20个主题的1.8万篇新闻数据集,使用TF-IDF向量化后降维至100维,采用多项式朴素贝叶斯模型训练,并划分验证集调参。完整Python代码展示了从数据预处理到模型评估的全流程,最终输出验证集和测试集准确率。配套源码可供下载实践,实现了"文本→特征→降维→训练→评估"的完整文本分类解决方案。

2025-08-24 12:00:00 891

原创 【Python】-- 机器学习项目 - 基于SVM算法的鸢尾花分类

摘要: 本文介绍了支持向量机(SVM)算法的核心原理及其在鸢尾花分类中的应用。SVM通过最大化决策边界间隔实现分类,支持线性/非线性场景,并可通过核函数处理高维数据。文中以鸢尾花数据集为例,详细解析了数据加载、训练验证集划分、线性核SVM建模(C=0.4)及评估流程,包括准确率与分类报告(精确率、召回率、F1)。附完整Python源码下载链接,便于实践复现。 关键词: SVM、最大间隔、核函数、鸢尾花分类、Python实现

2025-08-23 12:00:00 435

原创 【Python】-- 机器学习项目 - 基于逻辑回归算法的乳腺癌数据集分类

摘要: 逻辑回归是一种用于二分类/多分类的算法,通过概率预测实现分类(如垃圾邮件识别)。其数学模型采用Sigmoid函数将线性输出映射为0-1概率。与线性回归、岭回归不同,逻辑回归本质是分类模型。文章以乳腺癌数据集为例,展示了数据清洗、标准化、训练逻辑回归模型及评估的全过程,包括Python代码实现,最终输出预测结果及准确率(如87%)。提供完整源码下载,便于实际应用调整。

2025-08-22 10:36:40 793

原创 【Python】-- 机器学习项目 - 基于随机森林算法的泰坦尼克号幸存预测

摘要: 本文介绍了随机森林算法的原理及其在泰坦尼克号幸存预测中的应用。随机森林通过随机采样数据和特征,结合多棵决策树的投票或平均结果进行分类或回归。文章提供了Python实现代码,包括数据加载、特征处理(缺失值填充、独热编码)、模型建立与超参数调优(GridSearchCV)等步骤。代码最终输出测试集准确率、最佳参数及模型,并附源码下载链接。该案例完整展示了从数据预处理到模型优化的机器学习流程。

2025-08-21 13:56:46 611

原创 【Python】-- 机器学习项目 - 基于决策树算法的泰坦尼克号幸存乘客预测

决策树算法解析与应用 决策树是一种通过"是非题"递归分割数据直到纯净的分类方法。其结构包含根节点(起点)、内部节点(测试条件)、分支(答案)和叶节点(最终决策)。节点选择基于最大纯度增益,常用评价指标包括信息增益(ID3)、增益率(C4.5)和基尼指数(CART)。决策树优点在于可解释性强、无需数据缩放,但易过拟合(需剪枝)。通过泰坦尼克号数据集(Pclass/Age/Fare/Sex预测幸存)的Python实现示例,展示了数据清洗(填充缺失值、特征编码)、训练验证集划分(6:2:2)及

2025-08-20 20:29:29 557

原创 【Python】-- 机器学习项目 - 基于KNN算法的鸢尾花分类

KNN算法是一种基于距离的分类方法,通过计算测试样本与训练样本的距离,选取最近的K个邻居进行多数表决分类。其核心思想是"平滑假设"——相近样本具有相似特征。本文以鸢尾花分类为例,展示了KNN算法的完整实现流程:包括数据加载、标准化处理、数据集划分、模型训练与评估。Python代码实现了75/25和56/19/25的数据集划分比例,使用KNeighborsClassifier(n_neighbors=5)构建模型,最终在测试集上验证分类效果。文章附有完整源码下载地址,便于读者实践应用。

2025-08-17 22:08:31 522

原创 【Python】 -- 趣味代码 - 小恐龙游戏

摘要: 本文介绍了一个基于Pygame的简易恐龙跑酷游戏实现。玩家控制恐龙躲避仙人掌和乌鸦障碍物,游戏包含跳跃、重力模拟和碰撞检测功能。核心模块包括:背景渲染、恐龙与障碍物绘制、事件处理(按键跳跃/暂停)、碰撞检测逻辑(矩形相交判断)以及游戏状态管理(暂停/死亡界面)。代码采用物理引擎模拟跳跃抛物线(重力加速度G=9.8*30),支持二段跳机制,动态生成障碍物位置。主循环控制游戏速度(5单位/帧)、帧间隔(0.02秒)和难度分级,通过函数式编程实现模块化设计,最终输出游戏时间和死亡判定。 (字数:149)

2025-06-10 20:36:42 356

原创 【Python】 -- 趣味代码 - 飞船大战游戏

摘要: 这是一款基于Pygame的飞船大战游戏程序,实现了一个完整的外星人入侵游戏。程序包含游戏初始化、事件处理、碰撞检测和计分系统等功能,采用模块化设计,主要分为以下几个部分: 游戏框架:使用Pygame创建窗口,初始化游戏设置和界面元素(飞船、子弹、外星人舰队); 交互逻辑:通过game_functions模块处理键盘/鼠标事件,实现飞船移动、子弹发射和游戏状态控制; 动态系统:实时更新飞船、子弹和外星人位置,检测碰撞并计分; 资源管理:提供百度网盘下载链接(提取码:cegi),包含完整游戏代码和资源文

2025-06-10 20:03:37 244

原创 【Python】 -- 趣味代码 - 扫雷游戏

这段代码实现了一个完整的扫雷游戏,包括游戏初始化、事件处理、游戏状态更新和绘制等功能。使用 Pygame 库创建图形界面,并通过自定义的MineBlock类处理游戏的核心逻辑。游戏支持标记地雷、打开区块、计时等功能,并提供了良好的用户交互体验。

2025-06-10 20:01:28 1076 3

原创 【Python】 -- 趣味代码 - 数字游戏

摘要: 本文介绍了一个基于Python的猜数字游戏程序。程序通过GuessNum类实现主要功能,包括随机生成数字范围(100-1900)、处理用户输入、判断猜测结果(提示“猜大”或“猜小”)及游戏重启机制。用户通过菜单选择开始/结束游戏,系统会动态调整猜测范围边界(left和right)以优化提示。代码结构清晰,采用面向对象设计,但存在异常处理不足(如非数字输入会报错)和游戏结束缺少统计信息等问题。主函数main()控制流程,猜中后自动重启游戏。整体实现了基础交互逻辑,适合作为编程学习案例。(149字)

2025-05-28 14:22:10 138

原创 【Python】 -- 趣味代码 - 学生成绩管理系统

摘要:该代码实现了一个基于单链表的学生成绩管理系统,主要包含单链表数据结构(Node和SingleLinkedList类)和学生信息管理功能(StudentControlSystem类)。系统支持学生信息的增删改查、排序和文件存储,通过菜单交互实现用户操作。单链表实现了节点追加、插入、删除、反转、排序等基本操作,学生管理系统在此基础扩展了学号校验、数据持久化等功能。代码结构模块化清晰,但存在异常处理不足、部分操作效率较低等问题,整体实现了学生信息管理的基础功能。(149字)

2025-05-28 14:18:30 115

原创 【Python】 -- 趣味代码 - 俄罗斯方块

俄罗斯方块程序设计摘要(148字) 该程序使用Pygame实现经典俄罗斯方块游戏。主要功能包括: 游戏初始化:设置方格尺寸(30x30)、游戏区域(10x25格)、界面样式等基础参数 核心机制: 方块生成与下落控制(7种经典形状) 碰撞检测与边界判断 行消除计分系统(单行100分,四行1500分) 随分数提升自动加速 交互功能: 键盘控制移动/旋转方块 暂停/重新开始游戏 界面绘制: 实时显示当前方块、下一个方块预览 计分板与游戏状态提示 游戏状态管理:包含开始界面、进行中、结束三种状态切换 程序采用模块化

2025-05-28 14:08:37 214

原创 【Python】 -- 趣味代码 - 佩奇

这段代码使用Python的turtle模块绘制了一个粉色卡通猪形象。程序首先设置了画笔属性(粗细、颜色、速度)和画布尺寸,然后按顺序绘制了猪的各个部位:鼻子采用曲线填充、头部通过多段圆弧构成、耳朵眼睛使用圆形绘制、身体和手脚采用弧线与直线结合,最后添加尾巴细节。每个部位都通过精确的坐标定位和角度控制实现,填充颜色主要采用粉色系。代码结构清晰,通过begin_fill()和end_fill()实现颜色填充,最终调用t.done()完成绘图。该程序展示了turtle模块在图形绘制中的应用技巧。

2025-05-28 14:03:30 207

原创 【Python】 -- 趣味代码 - 皮卡丘

本文介绍了使用Python的turtle模块绘制皮卡丘的程序设计。该程序通过模块化的方式实现了皮卡丘头部、身体、眼睛、嘴巴、脸颊、耳朵等部位的绘制,主要特点如下: 程序结构:采用面向对象设计,封装了Pikachu类,包含初始化画笔、设置参数等方法。 核心功能: 无轨迹移动函数noTrace_goto实现画笔精确定位 独立函数绘制各个部位(如leftEye、rightEye等) 色彩填充和精细曲线控制(如嘴巴的弧度) 特色实现: 使用坐标列表实现复杂的嘴唇形状 通过调整tracer控制绘制过程显示 精确控制每

2025-05-28 14:00:43 401

原创 【Python】 -- 趣味代码 - 哆啦A梦

摘要: 该程序使用Python的turtle模块绘制了哆啦A梦的卡通形象。通过定义多个函数实现了头部、围巾、脸部特征(眼睛、鼻子、胡须)、身体、四肢和配饰(铃铛、口袋)的绘制。主要特点包括: 采用模块化设计,每个身体部位由独立函数实现 使用颜色填充和曲线绘制技术还原形象特征 包含无轨迹移动函数(my_goto)优化绘制过程 通过控制画笔速度和轨迹精度保证图形质量 程序最终输出完整的哆啦A梦线稿图像,展示了turtle模块在复杂图形绘制中的应用能力。该实现可作为学习计算机绘图的典型案例,适合Python初学者

2025-05-28 13:56:46 204

原创 【Python】 -- 趣味代码 - 五子棋

摘要: 五子棋程序提供人机对战和人人对战两种模式。人机对战基于Pygame实现,包含棋盘绘制、棋子交互、胜负判定和AI逻辑(评估得分选择落子)。人人对战功能类似,但支持双人轮流落子。核心模块包括棋盘管理(Checkerboard类)、AI决策(评估连续性得分)和游戏主循环(事件处理、界面更新)。代码结构清晰,适合学习基础游戏开发与AI实现。

2025-05-28 13:51:34 191

原创 【Matlab】-- 基于MATLAB的灰狼算法优化支持向量机的回归算法

GWO-SVR模型是灰狼优化算法(Grey Wolf Optimizer, GWO)与支持向量回归(Support Vector Regression, SVR)的结合,旨在提高SVR模型的性能。

2025-03-30 15:53:37 1135

原创 【Matlab】-- 基于MATLAB的飞蛾扑火算法与反向传播算法的混凝土强度预测

MFO-BP模型是基于飞蛾扑火优化算法(Moth-Flame Optimization, MFO)和反向传播(Backpropagation, BP)神经网络的结合模型。MFO算法用于优化BP神经网络的初始权重和阈值,从而提高模型的预测精度和泛化能力。

2025-03-30 15:53:25 1591 1

python设计源码 - python源码

动态规划模型Python代码 马尔科夫预测模型Python代码 神经网络分类模型Python代码

2024-11-20

python入门 - python基础

python入门

2024-11-19

人工智能 - 人工智能写诗

人工智能

2024-11-19

指针 - 智能指针 - 智能指针知识点

指针

2024-11-19

javaweb项目 - 学生管理系统

javaweb项目 - 学生管理系统

2024-11-19

模拟退火算法matlab代码

模拟退火算法matlab代码

2024-11-18

spring-boot - spring-boot小知识点

spring_boot - spring_boot小知识点

2024-11-18

二维数组 - 二维数组算法

二维数组

2024-11-18

字符串逆序 - 字符串逆序算法

字符串逆序

2024-11-18

nginx - nginx资源

nginx

2024-11-17

正则表达 - 正则表达匹配

python 正则表达式

2024-11-17

数字排序 - 排序算法 - 排序

数字排序

2024-11-17

mysql数据库项目 - mysql资源

mysql数据库项目 - mysql资源

2024-11-17

毕业设计 - 基于SVM神经网络的葡萄酒种类识别代码

毕业设计 - 基于SVM神经网络的葡萄酒种类识别代码

2024-11-16

ai - matlab吴恩达机器学习

ai - matlab吴恩达机器学习

2024-11-16

c是最好的编程语言 - 基础知识

c是最好的编程语言 - 基础知识

2024-11-16

结构体 - C语言数据结构

结构体

2024-11-16

考研冲刺 - 计算机操作系统与计算机网络资料

考研冲刺 - 计算机操作系统与计算机网络资料

2024-11-15

课程考试 - 计算机二级考试

课程考试 - 计算机二级考试资料

2024-11-15

软考冲刺 - 软考相关知识点

软考冲刺 - 软考相关知识点

2024-11-15

Matlab- 机器学习项目 - 基于XGBoost算法的数据回归预测

【Matlab】-- 机器学习项目 - 基于XGBoost算法的数据回归预测

2025-09-10

Python- 机器学习项目 - 基于朴素贝叶斯算法的新闻分类

【Python】-- 机器学习项目 - 基于朴素贝叶斯算法的新闻分类

2025-08-22

Python- 机器学习项目 - 基于SVM算法的鸢尾花分类

【Python】-- 机器学习项目 - 基于SVM算法的鸢尾花分类

2025-08-22

Python- 机器学习项目 - 基于逻辑回归算法的乳腺癌数据集分类

【Python】-- 机器学习项目 - 基于逻辑回归算法的乳腺癌数据集分类

2025-08-22

Python- 机器学习项目 - 基于随机森林算法的泰坦尼克号幸存预测

【Python】-- 机器学习项目 - 基于随机森林算法的泰坦尼克号幸存预测

2025-08-21

Python- 机器学习项目 - 基于决策树算法的泰坦尼克号幸存乘客预测

【Python】-- 机器学习项目 - 基于决策树算法的泰坦尼克号幸存乘客预测

2025-08-20

Python- 机器学习项目 - 基于KNN算法的鸢尾花分类

【Python】-- 机器学习项目 - 基于KNN算法的鸢尾花分类

2025-08-17

Python 趣味编程代码.rar

Python 趣味编程 使用turtle库,进行:1.1楼花树1.2楼花树2.随机飘落3.玫瑰4.彩色螺旋线5.圣诞树6.小猪佩奇7.彩色光球8.弹簧隧道9.蛋糕10,贪吃蛇11.表白12.小黄人;等动画绘制。

2025-01-05

浪漫节日代码 - 爱心代码、圣诞树代码

内容概要: 本资料包含了一系列用于庆祝浪漫节日的创意代码,主要包括爱心代码和圣诞树代码。这些代码可以生成视觉上吸引人的图案和动画,用于在屏幕上展示爱心和圣诞树,增加节日气氛。爱心代码可以用于表达爱意,而圣诞树代码则适合在圣诞节期间使用,为用户带来节日的欢乐和视觉享受。 适用人群: 本资料适用于以下人群: 程序员和开发者,他们希望在项目中添加节日元素或为特别场合创造个性化的视觉效果。 网页设计师,他们需要为网站或应用程序添加节日主题的装饰。 技术爱好者和DIY爱好者,他们喜欢通过编程来庆祝节日或为朋友和家人制作特别的礼物。 实现:可直接运行python程序。

2024-12-23

基于飞蛾扑火算法与反向传播算法的混凝土强度预测:MFO-BP

内容概要: 本资料介绍了一种基于飞蛾扑火算法(Moth Flame Optimization, MFO)与反向传播算法(Backpropagation, BP)的混凝土强度预测模型。飞蛾扑火算法是一种新兴的元启发式优化算法,它模拟了飞蛾在自然界中向光源飞行的行为,用于寻找最优解。结合反向传播算法,该模型能够优化神经网络的权重和偏置,以提高混凝土强度预测的准确性。这种集成方法特别适用于处理具有多个输入变量和复杂非线性关系的工程问题。 其他说明: 算法优势:飞蛾扑火算法以其简单的数学模型和强大的全局搜索能力,为神经网络的训练提供了有效的参数优化。 实现方式:该模型的实现通常需要编程技能,通过MATLAB编程语言进行开发。 性能评估:模型的预测性能可以通过决定系数(R²)、均方误差(MSE)等统计指标进行评估 实现:包含GUI界面,附赠案例数据可直接运行matlab程序。

2024-12-21

基于灰狼算法与支持向量机的回归预测:GWOSVR

内容概要: GWOSVR(基于灰狼算法优化的支持向量机回归)是一种先进的机器学习技术,它结合了灰狼优化算法(Grey Wolf Optimizer, GWO)和支持向量机回归(Support Vector Regression, SVR)。这种集成方法旨在通过GWO算法全局寻优SVR的关键参数,如惩罚系数和核函数参数,以提高回归预测的准确性和泛化能力。GWOSVR特别适合处理复杂的非线性回归问题,能够自动调整模型参数,减少对经验和反复试验的依赖。 其他说明: 算法优势:GWOSVR通过模拟灰狼群体的狩猎行为,有效地避免了局部最优解,提高了寻优效率。 实现方式:该方法可以通过编程语言如Python或MATLAB实现,具体实现细节和代码示例可以在相关技术博客和开源项目中找到。 性能评估:GWOSVR的性能通常通过均方根误差(RMSE)或平均绝对误差(MAE)等指标进行评估,实验结果表明其在多个数据集上的表现优于传统SVR模型。 实现:附赠案例数据可直接运行matlab程序。

2024-12-20

基于灰狼算法与支持向量机的分类预测:GWOSVM

内容概要: GWOSVM(灰狼算法优化支持向量机)是一种结合了灰狼优化算法(GWO)和支持向量机(SVM)的分类预测模型。该模型利用GWO的群体智能和搜索能力来自动选择SVM分类器的最优参数,以提高分类的准确性和效率。灰狼优化算法是一种模拟灰狼群体捕食行为的元启发式优化算法,具有收敛速度快、全局搜索能力强等优点。支持向量机则是一种常用的监督学习算法,主要用于解决二分类或多分类任务。 其他说明: 参数优化:GWOSVM通过优化SVM的惩罚参数C和核函数参数γ,提高了模型的泛化能力和预测精度。 代码实现:提供了MATLAB的实现代码,使得用户可以根据自己的需求进行调整和应用。 模型性能:通过结果可视化,如收敛曲线和预测效果对比图,用户可以直观地理解模型的性能。 实现:附赠案例数据可直接运行matlab程序。

2024-12-19

美赛常用代码资源 - 算法资源

本资料集合了多种数学建模和优化算法的常用代码资源,旨在为参与美国大学生数学建模竞赛(MCM/ICM,简称美赛)的参赛者提供实用的编程工具和算法实现。这些算法包括BP神经网络、CT图像重建、Floyd算法、Topsis算法、层次分析法、分支定界法、灰色预测、粒子群算法、模拟退火算法(特别适用于TSP和背包问题)、人口增长模型以及搜索和遗传算法。这些算法覆盖了从机器学习到优化问题的广泛领域,为解决复杂问题提供了多样化的方法。 适用人群: 本资料适用于以下人群: 参与美国大学生数学建模竞赛的本科生和研究生。 对数学建模、算法设计和优化问题感兴趣的研究者和开发者。 需要在项目或研究中应用上述算法的工程师和数据科学家。 使用场景及目标: 数学建模竞赛:为美赛参赛者提供快速实现算法的代码模板,帮助他们在比赛中高效解决问题。 学术研究:为研究者提供算法实现,以便在学术论文中验证和比较不同算法的效果。 工程项目:为工程师提供算法支持,帮助他们在实际工程项目中解决优化和预测问题。 数据分析:为数据科学家提供工具,以便在数据分析项目中应用机器学习和优化算法

2024-12-09

蓝桥杯模拟题 - 蓝桥杯模拟

第十六届蓝桥杯模拟题

2024-11-24

python集合 - 数据结构与算法

python集合 - 数据结构与算法

2024-11-24

数据结构课程设计 - 数据结构

数据结构课程设计

2024-11-24

算法实现-美赛算法实现

算法实现_美赛算法实现: CT图像重建 粒子群算法 选传算法 指派问题(匈牙利算法) 最小生成树

2024-11-21

c语言指针详解 - c语言指针

c语言指针详解

2024-11-20

docker - docker测试源码

docker

2024-11-20

卷积神经网络 - 神经网络

卷积神经网络

2024-11-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除