IDR:通过迭代数据细化的自我监督图像去噪

本文是CVPR2022的新论文,因与我的研究方向不是紧密相关,所以不看前两节,直接上方法!

图1. 
顶行:在不同时期创建的训练目标。它们已在我们的方法中逐步完善。
底行:与以前的作品比较:DBSN (ECCV 2020)、Noisier2Noise (CVPR 2020)。

方法

在本节中,作者首先介绍了噪声数据集的创建,在此基础上,对使用噪声数据集进行学习去噪进行了研究,并实证验证了两个发现。然后,作者展示了他的自我监督去噪框架:迭代数据细化(IDR)。为了加速这种迭代方法的训练过程,作者进一步引入了一个快速版本的 IDR 以减少训练时间,同时获得与 IDR 完整版本相似的性能。

1. 学习去噪的数据偏差试点研究(Pilot Study on Data Bias of Learning Denoising)

对于使用已知噪声模型训练去噪模型,一种典型的方法 [37] 是通过将噪声 n 添加到地面真实干净图像 y 上来创建合成噪声图像,表示为 y + n 并用作网络输入。我们将此类合成训练数据命名为噪声-清洁数据集,用于学习映射 (y + n) → y。

然而,真实的干净图像 y 通常很难获得。另一种似是而非的方法是将噪声 n 添加到实际的噪声图像 x 上,以创建噪声更均匀的图像 x + n,其中较晚的噪声 x + n 被视为输入,而前噪声图像 x 被用作学习目标。我们将此类训练数据称为噪声更大的数据集(noisier-noisy dataset)。

虽然后面的数据集更容易获得,但上述两类数据集之间不可避免地存在数据偏差,并且在后面的 noisier-noisy 数据集上训练的去噪网络不能很好地处理实际的噪声图像 x。我们进行如下试点研究,并凭经验验证两个重要发现。形式上,数据集表示为:

这里,y_{i}是一张干净的图像(实际上很难获得),x_{i} = y_{i} + n_{i} 是其对应的噪声图像,n_{i} 是噪声模型产生的随机噪声,y_{i} +n_{i} 表示应用采样噪声 n_{i}到实际嘈杂的图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值